Learn More
  • N A Moran
  • 1996
Many bacteria live only within animal cells and infect hosts through cytoplasmic inheritance. These endosymbiotic lineages show distinctive population structure, with small population size and effectively no recombination. As a result, endosymbionts are expected to accumulate mildly deleterious mutations. If these constitute a substantial proportion of new(More)
Insect heritable symbionts have proven to be ubiquitous, based on molecular screening of various insect lineages. Recently, molecular and experimental approaches have yielded an immensely richer understanding of their diverse biological roles, resulting in a burgeoning research literature. Increasingly, commonalities and intermediates are being discovered(More)
Evolutionary studies suggest that 200-250 million years ago an aphid ancestor was infected with a free-living eubacterium. The latter became established within aphid cells. Host and endosymbiont (genus Buchnera) became interdependent and unable to survive without each other. The growth of Buchnera became integrated with that of the aphids, which acquired(More)
In colony collapse disorder (CCD), honey bee colonies inexplicably lose their workers. CCD has resulted in a loss of 50 to 90% of colonies in beekeeping operations across the United States. The observation that irradiated combs from affected colonies can be repopulated with naive bees suggests that infection may contribute to CCD. We used an unbiased(More)
Since 2006, numerous cases of bacterial symbionts with extraordinarily small genomes have been reported. These organisms represent independent lineages from diverse bacterial groups. They have diminutive gene sets that rival some mitochondria and chloroplasts in terms of gene numbers and lack genes that are considered to be essential in other bacteria.(More)
Although bacteria increase their DNA content through horizontal transfer and gene duplication, their genomes remain small and, in particular, lack nonfunctional sequences. This pattern is most readily explained by a pervasive bias towards higher numbers of deletions than insertions. When selection is not strong enough to maintain them, genes are lost in(More)
Symbiotic relationships between animals and microorganisms are common in nature, yet the factors controlling the abundance and distributions of symbionts are mostly unknown. Aphids have an obligate association with the bacterium Buchnera aphidicola (the primary symbiont) that has been shown to contribute directly to aphid fitness. In addition, aphids(More)
Attempts to calibrate bacterial evolution have relied on the assumption that rates of molecular sequence divergence in bacteria are similar to those of higher eukaryotes, or to those of the few bacterial taxa for which ancestors can be reliably dated from ecological or geological evidence. Despite similarities in the substitution rates estimated for some(More)
Specialized relationships with bacteria often allow animals to exploit a new diet by providing a novel set of metabolic capabilities. Bees are a monophyletic group of Hymenoptera that transitioned to a completely herbivorous diet from the carnivorous diet of their wasp ancestors. Recent culture-independent studies suggest that a set of distinctive bacterial(More)
  • Nancy A Moran
  • 2007
Genomics has revealed that inheritance systems of separate species are often not well segregated: genes and capabilities that evolve in one lineage are often stably acquired by another lineage. Although direct gene transfer between species has occurred at some level in all major groups, it appears to be far more frequent in prokaryotes than in multicellular(More)