Nan-Ying Liang

Learn More
In this paper, we develop an online sequential learning algorithm for single hidden layer feedforward networks (SLFNs) with additive or radial basis function (RBF) hidden nodes in a unified framework. The algorithm is referred to as online sequential extreme learning machine (OS-ELM) and can learn data one-by-one or chunk-by-chunk (a block of data) with(More)
The primitive Extreme Learning Machine (ELM) [1, 2, 3] with additive neurons and RBF kernels was implemented in batch mode. In this paper, its sequential modification based on recursive least-squares (RLS) algorithm, which referred as Online Sequential Extreme Learning Machine (OS-ELM), is introduced. Based on OS-ELM, Online Sequential Fuzzy Extreme(More)
In this paper, a recently developed machine learning algorithm referred to as Extreme Learning Machine (ELM) is used to classify five mental tasks from different subjects using electroencephalogram (EEG) signals available from a well-known database. Performance of ELM is compared in terms of training time and classification accuracy with a Backpropagation(More)
  • 1