Learn More
Neuropathic pain is characterized by mechanical allodynia induced by low-threshold myelinated Aβ-fiber activation. The original gate theory of pain proposes that inhibitory interneurons in the lamina II of the spinal dorsal horn (DH) act as "gate control" units for preventing the interaction between innocuous and nociceptive signals. However, our(More)
Local physical interactions between cells and extracellular matrix (ECM) influence directional cell motility that is critical for tissue development, wound repair, and cancer metastasis. Here we test the possibility that the precise spatial positioning of focal adhesions governs the direction in which cells spread and move. NIH 3T3 cells were cultured on(More)
BACKGROUND Small clinical trials have reported that low-frequency repetitive transcranial magnetic stimulation (rTMS) might improve language recovery in patients with aphasia after stroke. However, no systematic reviews or meta-analyses studies have investigated the effect of rTMS on aphasia. The objective of this study was to perform a meta-analysis of(More)
This paper describes a miniaturized, integrated, microfluidic device that can pull molecules and living cells bound to magnetic particles from one laminar flow path to another by applying a local magnetic field gradient, and thus selectively remove them from flowing biological fluids without any wash steps. To accomplish this, a microfabricated(More)
Organization of signaling complexes at excitatory synapses by membrane-associated guanylate kinase (MAGUK) proteins regulates synapse development, plasticity, senescence and disease. Post-translational modification of MAGUK family proteins can drive their membrane localization, yet it is unclear how these intracellular proteins are targeted to sites of(More)
Pulsed near-infrared radiation has been proposed as an alternative stimulus for auditory nerve stimulation and could be potentially used in the design of cochlear implant. Although the infrared with high absorption coefficient of water (i.e., wavelength ranged from 1.8 to 2.2 μm) has been widely investigated, the lymph in the cochlea absorbs most of the(More)