Learn More
We describe a new regime of magnetotransport in two-dimensional electron systems in the presence of a narrow potential barrier. In such systems, the Landau level states, which are confined to the barrier region in strong magnetic fields, undergo a deconfinement transition as the field is lowered. Transport measurements on a top-gated graphene device are(More)
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Electrons in graphene, behaving as massless relativistic Dirac particles, provide a new perspective on the relation between condensed matter and high-energy physics. We discuss atomic collapse, a novel state of superheavy atoms stripped of(More)
We show that the strong coupling of pseudospin orientation and charge carrier motion in bilayer graphene has a drastic effect on transport properties of ballistic p-n-p junctions. Electronic states with zero momentum parallel to the barrier are confined under it for one pseudospin orientation, whereas states with the opposite pseudospin tunnel through the(More)
  • 1