Namjung Hur

Learn More
Ferroelectric and magnetic materials are a time-honoured subject of study and have led to some of the most important technological advances to date. Magnetism and ferroelectricity are involved with local spins and off-centre structural distortions, respectively. These two seemingly unrelated phenomena can coexist in certain unusual materials, termed(More)
We have studied the magnetostructural phase diagram of multiferroic TbMn2O5 as a function of temperature and magnetic field by neutron diffraction. Dielectric and magnetic anomalies are found to be associated with steps in the magnetic propagation vector, including a rare example of a commensurate-incommensurate transition on cooling below 24 K, and in the(More)
We have measured the optical conductivity of single crystal LuMnO3 from 10 to 45000 cm(-1) at temperatures between 4 and 300 K. A symmetry allowed on-site Mn d-d transition near 1.7 eV is observed to blueshift ( approximately 0.1 eV) in the antiferromagnetic state due to Mn-Mn superexchange interactions. Similar anomalies are observed in the temperature(More)
Spin glasses are founded in the frustration and randomness of microscopic magnetic interactions. They are non-ergodic systems where replica symmetry is broken. Although magnetic glassy behaviour has been observed in many colossal magnetoresistive manganites, there is no consensus that they are spin glasses. Here, an intriguing glass transition in(More)
We have investigated the detailed magnetic field dependence of the electric polarization and dielectric constant in (Tb,Dy,Ho)Mn2O5 where magnetic and ferroelectric transitions are intimately coupled. Our fundamental discovery is the unprecedented large change of the dielectric constant with magnetic field, particularly in DyMn2O5, associated with an(More)
Li(2)MnO(3) consists of a layered Mn honeycomb lattice separated by a single layer of LiO(6) octahedra along the c-axis. By using single crystal Li(2)MnO(3) samples, we have examined the physical properties and carried out both powder and single crystal neutron diffraction studies to determine that Mn moments order antiferromagnetically at T(N) = 36 K with(More)
Recently, α-RuCl3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl3 was(More)
The thermal conductivity of the magnetically frustrated, ferroelectric YMnO3 exhibits an isotropic suppression in the cooperative paramagnetic state, followed by a sudden increase upon magnetic ordering. This unprecedented behavior without an associated static structural distortion probably originates from the strong dynamic coupling between acoustic(More)
The new binary compound Gd(3)Ge(4) has been synthesized and its structure has been determined from single-crystal X-ray diffraction. Gd(3)Ge(4) crystallizes in the orthorhombic space group Cmcm (No. 63) with unit cell parameters a = 4.0953(11) A, b = 10.735(3) A, c = 14.335(4) A, and Z = 4. Its structure can be described as corrugated layers of germanium(More)
The immiscibility between rhombohedral La(5/8)Sr(3/8)MnO3 and hexagonal LuMnO3 leads to a microm-scale heterogeneous mixture of half-metallic-ferromagnetic and insulating-ferroelectric phases. Electronic conduction of the mixture exhibits nearly ideal percolation behavior in the paramagnetic state with a threshold of 0.224(5) metal volume fraction and a(More)