Learn More
Somatic cell nuclear transfer and transcription-factor-based reprogramming revert adult cells to an embryonic state, and yield pluripotent stem cells that can generate all tissues. Through different mechanisms and kinetics, these two reprogramming methods reset genomic methylation, an epigenetic modification of DNA that influences gene expression, leading(More)
Mutations in heat shock 27 kDa protein 1 (HSP27 or HSPB1) cause distal hereditary motor neuropathy (dHMN) or Charcot-Marie-Tooth disease type 2 F (CMT2F) according to unknown factors. Mutant HSP27 proteins affect axonal transport by reducing acetylated tubulin. We generated a transgenic mouse model overexpressing HSP27-S135F mutant protein driven by(More)
The changes in DNA methylation status in cancer cells are characterized by hypermethylation of promoter CpG islands and diffuse genomic hypomethylation. Alu and long interspersed nucleotide element-1 (LINE-1) are non-coding genomic repetitive sequences and methylation of these elements can be used as a surrogate marker for genome-wide methylation status.(More)
BACKGROUND Mutations in MPV17 cause the autosomal recessive disorder mitochondrial DNA depletion syndrome 6 (MTDPS6), also called Navajo neurohepatopathy (NNH). Clinical features of MTDPS6 is infantile onset of progressive liver failure with seldom development of progressive neurologic involvement. METHODS Whole exome sequencing (WES) was performed to(More)
Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A (α-gal A), which results in the deposition of globotriaosylceramide (Gb3) in the vascular endothelium. Globotriaosylsphingosine (lyso-Gb3), a deacylated Gb3, is also increased in the plasma of patients with Fabry disease. Renal fibrosis is a key feature of advanced(More)
Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the gene encoding the α-galactosidase A (α-Gal A) lysosomal enzyme, which results in globotriaosylceramide (Gb3) storage in vascular endothelial cells and different cell types throughout the body. Involvement of the kidney and heart is life threatening, and fibrosis of these(More)
Somatic cell nuclear transfer and transcription factor-based reprogramming revert adult cells to an embryonic state, and yield pluripotent stem cells that can generate all tissues. These two reprogramming methods reset genomic methylation, an epigenetic modification of DNA that influences gene expression, by different mechanisms and kinetics, leading us to(More)
DNA methylation is one of the main epigenetic mechanisms and hypermethylation of CpG islands at tumor suppressor genes switches off these genes. To find novel DNA methylation markers in hepatocellular carcinoma (HCC), we performed pharmacological unmasking (treatment with 5-aza-2'-deoxycytidine or trichostatin A) followed by microarray analysis in HCC cell(More)
  • Citation Kim, K Kim, A Doi, B Wen, K Ng, R Zhao +26 others
  • 2011
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Summary Somatic cell nuclear transfer and transcription factor-based reprogramming revert adult cells to an embryonic state, and yield pluripotent stem cells that can generate all tissues. These two reprogramming methods reset genomic(More)
The present study examined the regulatory mechanisms of GnRH gene expression by N-methyl-d-aspartic acid (NMDA) in immortalized hypothalamic GnRH neurons (GT1-1 cells). NMDA (100 microM) stimulated GnRH mRNA levels transiently at 2 h after treatment. Dose-response experiment showed that there was a biphasic action of NMDA on GnRH mRNA levels: GnRH mRNA(More)
  • 1