Learn More
The properties of few layer (one layer (1 L) to four layer (4 L)) graphenes doped by adsorption and intercalation of Br(2) and I(2) vapors are investigated. The Raman spectra of the graphene G vibrations are observed as a function of the number of layers. There is no evidence for chemical reaction disrupting the basal plane pi electron conjugation.(More)
Strong Raman scattering is observed from iodine anions adsorbed at ca. 3% coverage on single layer graphene. In addition, the Raman signal from just one bromine intercalation layer inside three and four layer thick graphenes is observed. We analyze and model the intramolecular electronic, charge-transfer, and multiple reflection electromagnetic mechanisms(More)
We report synthesis and transport properties of the minimal graphite intercalation compound, a ferric chloride (FeCl(3))(n) island monolayer inside bilayer graphene. Chemical doping by the intercalant is simultaneously probed by micro-Raman spectroscopy and Hall measurements. Quantum oscillations of conductivity originate from microscopic domains of(More)
We report the optical reflectivity and Raman scattering of few layer (L) graphene exposed to K and Rb vapors. Samples many tens of layers thick show the reflectivity and Raman spectra of the stage 1 bulk alkali intercalation compounds (GICs) KC(8) and RbC(8). However, these bulk optical and Raman properties only begin to appear in samples more than about 15(More)
  • 1