Learn More
Imbalance of the excitatory neurotransmitter glutamate and of the inhibitory neurotransmitter GABA is one of several causes of seizures. ATP has also been implicated in epilepsy. However, little is known about the mechanisms involved in the release of ATP from cells and the consequences of the altered ATP signaling during seizures. Pannexin1 (Panx1) is(More)
Gene targeting strategies have become a powerful technology for elucidating mammalian gene function. The recently generated knockout (KO)-first strategy produces a KO at the RNA processing level and also allows for the generation of conditional KO alleles by combining FLP/FRT and Cre/loxP systems, thereby providing high flexibility in gene manipulation.(More)
Pannexin1 (Panx1) is a plasma membrane channel permeable to relatively large molecules, such as ATP. In the central nervous system (CNS) Panx1 is found in neurons and glia and in the immune system in macrophages and T-cells. We tested the hypothesis that Panx1-mediated ATP release contributes to expression of Experimental Autoimmune Encephalomyelitis (EAE),(More)
The Reversible Logic has received great attention in the past recent years due to its ability in reducing the power dissipation. Owing to its unique technique of one-to-one mapping between the inputs and the corresponding outputs, the reversible logic gates are now finding profound as well as promising applications in emerging growing fields such as digital(More)
A multitude of environmental signaling molecules influence monocyte and macrophage innate and adaptive immune responses, including ATP and prostanoids. Interestingly, purinergic (P2) and eicosanoid receptor signaling interact such that the activation of P2 receptors leads to prostanoid production, which can then interfere with P2Y-mediated macrophage(More)
  • 1