Learn More
We report the preparation of free-standing flexible conductive reduced graphene oxide/Nafion (RGON) hybrid films by a solution chemistry that utilizes self-assembly and directional convective-assembly. The hydrophobic backbone of Nafion provided well-defined integrated structures, on micro- and macroscales, for the construction of hybrid materials through(More)
An active immobilization method utilizing the metal-binding property was developed and examined for its ability to facilitate the biosensing of avian influenza virus. The special biosensing performance with optical plasmonic analysis, including surface plasmon resonance (SPR) was evaluated on gold substrate and also by SPR imaging (SPRi) and localized SPR(More)
The effective and strong immobilization of enzymes on solid surfaces is required for current biological applications, such as microchips, biofuel cells, and biosensors. Gold-binding polypeptide (GBP), a genetically designed peptide, possesses unique and specific interactions with a gold surface, resulting in improved enzyme stability and activity. Herein we(More)
We report the use of a hydrogel polymer, recombinant Escherichia coli cell extracts, and a microdroplet-based microfluidic device to fabricate artificial cellular bioreactors which act as reactors to synthesize diverse metal nanoparticles (NPs). The combination of cell extracts, microdroplet-based microfluidic device, and hydrogel was able to produce a mass(More)
A microporous covalent triazine polymer (CTP) network with a high surface area was synthesized via the Friedel-Crafts reaction and employed as a potential transport system for drug delivery and controlled release. The CTP was transformed to the nanoscale region by intense ultrasonication followed by filtration to yield nanoscale CTP (NCTP). This product(More)
This study evaluates the utility of an antibacterial microneedle composed of green tea (GT) extract and hyaluronic acid (HA), for the efficient delivery of GT. These microneedles have the potential to be a patient-friendly method for the conventional sustained release of drugs. In this study, a fabrication method using a mold-based technique to produce(More)
A cell-based assay system for simultaneous quantification of the three amino acids, phenylalanine (Phe), methionine (Met), and leucine (Leu) in a single biological sample, was developed and applied in the multiplex diagnosis of three key metabolic diseases of newborn babies. The assay utilizes three Escherichia coli auxotrophs, which grow only in the(More)
BACKGROUND The anchoring motif is one of the most important aspects of cell surface display as well as efficient and stable display of target proteins. Thus, there is currently a need for the identification and isolation of novel anchoring motifs. RESULTS A system for the display of recombinant proteins on the surface of Escherichia coli was developed(More)
In this study, we developed lateral flow assay (LFA) biosensors for the detection of hepatitis B surface antigens using well-controlled gold nanoparticles (AuNPs). To enhance colorimetric signals, a seeded growth method was used for the preparation of size-controlled AuNPs with a narrow size distribution. Different sizes of AuNPs in the range of 342-137.8(More)