Learn More
Here, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making measurements over a range of field strengths and scan parameters, we tested the key assumptions and the robustness of the method. The measurements confirm that a consistent quantitative estimate of MTV(More)
New classes of drugs are needed to combat hepatitis C virus (HCV), an important worldwide cause of liver disease. We describe an activity of a key domain, an amphipathic helix we termed 4BAH2, within a specific HCV nonstructural protein, NS4B. In addition to its proposed role in viral replication, we validate 4BAH2 as essential for HCV genome replication(More)
We have studied the encapsulation of human progenitor cells into 3D PEG hydrogels. Replication-incompetent lentivirus promoter reporter vectors were found to efficiently detect the in vivo expression of human hepatic genes in hydrogel-encapsulated liver progenitor cells. Similarly, hydrogel-encapsulated cells could be efficiently infected with hepatitis C(More)
Hepatitis C Virus (HCV) is a leading cause of liver disease and represents a significant public health challenge. Treatments for this disease are inadequate and improved antiviral therapies are necessary. Several such antivirals are in development, most of which target the well-characterized NS3 protease or the NS5B polymerase. In contrast, the(More)
BACKGROUND & AIMS Phosphoinositides (PIs) bind and regulate localization of proteins via a variety of structural motifs. PI 4,5-bisphosphate (PI[4,5]P2) interacts with and modulates the function of several proteins involved in intracellular vesicular membrane trafficking. We investigated interactions between PI(4,5)P2 and hepatitis C virus (HCV)(More)
Currently, the clinical utility of taxane-based drug formulations in castration-resistant prostate cancer (CRPC) is severely limited by acquired chemotherapy resistance, dose-limiting toxicities, and nonresponders. Therefore, approaches to improve taxane-based chemotherapy are desperately required. In this review, we highlight the strategies that aim to(More)
Pore formation by membrane-active antimicrobial peptides is a classic strategy of pathogen inactivation through disruption of membrane biochemical gradients. It remains unknown why some membrane-active peptides also inhibit enveloped viruses, which do not depend on biochemical gradients. Here, we employ a label-free biosensing approach based on simultaneous(More)
Active targeting of nanoscale drug carriers can improve tumor-specific delivery; however, cellular heterogeneity both within and among tumor sites is a fundamental barrier to their success. Here, we describe a tumor microenvironment-responsive layer-by-layer (LbL) polymer drug carrier that actively targets tumors based on two independent mechanisms:(More)
Membrane association of the hepatitis C virus NS5A protein is required for viral replication. This association is dependent on an N-terminal amphipathic helix (AH) within NS5A and is restricted to a subset of host cell intracellular membranes. The mechanism underlying this specificity is not known, but it may suggest a novel strategy for developing specific(More)
The quartz crystal microbalance (QCM) has been increasingly utilized in the monitoring of the deposition of thin macromolecular films. Studies in the deposition of polymers, biomaterials, and interfacial reactions under electrochemical environment are some of the conditions for the study of these material and deposition properties at a lipid interface.(More)