Naka Hattori

Learn More
The first cell differentiation event in mammalian embryogenesis segregates inner cell mass lineage from the trophectoderm at the blastocyst stage. Oct-4, a member of the POU family of transcription factors, is necessary for the pluripotency of the inner cell mass lineage. Embryonic stem (ES) cells, which contribute to all of embryonic lineages, express the(More)
The formation of DNA methylation patterns is one of the epigenetic events that underlie mammalian development. The Sphk1 CpG island is a target for tissue-dependent DNA methylation as well as a template for generating multiple subtypes. The number of mammalian non-coding RNA genes is rapidly expanding. In this study, we found endogenous antisense(More)
The Nanog and Oct-4 genes are essential for maintaining pluripotency of embryonic stem (ES) cells and early embryos. We previously reported that DNA methylation and chromatin remodeling underlie the cell type-specific mechanism of Oct-4 gene expression. In the present study, we found that there is a tissue-dependent and differentially methylated region(More)
Human organic anion transporter 3 (hOAT3/SLC22A8) is predominantly expressed in the proximal tubules of the kidney and plays a major role in the urinary excretion of a variety of organic anions. The promoter region of hOAT3 was characterized to elucidate the mechanism underlying the tissue-specific expression of hOAT3. The minimal promoter of hOAT3 was(More)
In the mammalian genome, numerous CpG-rich loci define tissue-dependent and differentially methylated regions (T-DMRs). Euchromatin from different cell types differs in terms of its tissue-specific DNA methylation profile as defined by these T-DMRs. G9a is a euchromatin-localized histone methyltransferase (HMT) and catalyzes methylation of histone H3 at(More)
Expression of Urate transporter 1 (URAT1/SLC22A12) is restricted to the proximal tubules in the kidney, where it is responsible for the tubular reabsorption of urate. To elucidate the mechanism underlying its tissue-specific expression, the transcriptional regulation of the hURAT1 and mUrat1 genes was investigated. Hepatocyte nuclear factor 1 alpha(More)
BACKGROUND DNA methylation is involved in many gene functions such as gene-silencing, X-inactivation, imprinting and stability of the gene. We recently found that some CpG islands had a tissue-dependent and differentially methylated region (T-DMR) in normal tissues, raising the possibility that there may be more CpG islands capable of differential(More)
Uterine leiomyomas are the most common uterine tumors in women. Estrogen receptor-alpha (ER-alpha) is more highly expressed in uterine leiomyomas than in normal myometrium, suggesting a link between uterine leiomyomas and ER-alpha expression. DNA methylation is an epigenetic mechanism of gene regulation and plays important roles in normal embryonic(More)
Many CpG islands have tissue-dependent and differentially methylated regions (T-DMRs) in normal cells and tissues. To elucidate how DNA methyltransferases (Dnmts) participate in methylation of the genomic components, we investigated the genome-wide DNA methylation pattern of the T-DMRs with Dnmt1-, Dnmt3a-, and/or Dnmt3b-deficient ES cells by restriction(More)
The stability of many proteins is controlled by the ubiquitin proteolytic system, which recognizes specific substrates through the action of E3 ubiquitin ligases [1]. The SCFs are a recently described class of ubiquitin ligase that target a number of cell cycle regulators and other proteins for degradation in both yeast and mammalian cells [2] [3] [4] [5](More)