Learn More
GDSL-type lipase is a hydrolytic enzyme whose amino acid sequence contains a pentapeptide motif (Gly-X-Ser-X-Gly) with active serine (Ser). Pepper GDSL-type lipase (CaGLIP1) gene was isolated and functionally characterized from pepper leaf tissues infected by Xanthomonas campestris pv. vesicatoria (Xcv). The CaGLIP1 protein was located in the vascular(More)
The Xanthomonas campestris pv vesicatoria (Xcv) effector AvrBsT induces a hypersensitive cell death in pepper (Capsicum annuum). However, the molecular mechanisms underlying AvrBsT-triggered cell death are not fully understood. Here, we identified pepper arginine decarboxylase (CaADC1) as an AvrBsT-interacting protein, which is early and strongly induced in(More)
A type III effector protein, AvrBsT, is secreted into plant cells from Xanthomonas campestris pv. vesicatoria Bv5-4a, which causes bacterial spot disease on pepper (Capsicum annuum) and tomato (Solanum lycopersicum). To define the function and recognition of AvrBsT in the two host plants, avrBsT was introduced into the virulent pepper strain X. campestris(More)
Xanthomonas campestris pv vesicatoria type III effector protein, AvrBsT, triggers hypersensitive cell death in pepper (Capsicum annuum). Here, we have identified the pepper SGT1 (for suppressor of the G2 allele of skp1) as a host interactor of AvrBsT and also the pepper PIK1 (for receptor-like cytoplasmic kinase1). PIK1 specifically phosphorylates SGT1 and(More)
Plants elaborate a vast array of enzymes that synthesize defensive secondary metabolites in response to pathogen attack. Here, we isolated the pathogen-responsive CaMNR1 [menthone: (+)-(3S)-neomenthol reductase] gene, a member of the short-chain dehydrogenase/reductase (SDR) superfamily, from pepper (Capsicum annuum) plants. Gas chromatography-mass(More)
Formate dehydrogenase (FDH; EC 1.2.1.2) is an NAD-dependent enzyme that catalyzes the oxidation of formate to carbon dioxide. Here, we report the identification and characterization of pepper (Capsicum annuum) mitochondrial FDH1 as a positive regulator of cell death and defense responses. Transient expression of FDH1 caused hypersensitive response (HR)-like(More)
Plants produce various proteinaceous inhibitors to protect themselves against microbial pathogen attack. A xyloglucan-specific endo-β-1,4-glucanase inhibitor1 gene, CaXEGIP1, was isolated and functionally characterized in pepper (Capsicum annuum) plants. CaXEGIP1 was rapidly and strongly induced in pepper leaves infected with avirulent Xanthomonas(More)
To control defense and cell-death signaling, plants contain an abundance of pathogen recognition receptors such as leucine-rich repeat (LRR) proteins. Here we show that pepper (Capsicum annuum) LRR1 interacts with the pepper pathogenesis-related (PR) protein 4b, PR4b, in yeast and in planta. PR4b is synthesized in the endoplasmic reticulum, interacts with(More)
Plant defense against microbial pathogens is coordinated by a complex regulatory network. Cysteine/histidine-rich DC1 domain proteins mediate a variety of cellular processes involved in plant growth, development and stress responses. We identified a pepper (Capsicum annuum) cysteine/histidine-rich DC1 domain protein gene, CaDC1, which positively regulates(More)
Pathogens have evolved a variety of virulence factors to infect host plants successfully. We previously identified the pepper plasma-membrane-resident hypersensitive-induced reaction protein (CaHIR1) as a regulator of plant disease- and immunity-associated cell death. Here, we identified the small filamentous hemagglutinin-like protein (Fha1) of Xanthomonas(More)