Najeeb ul Hassan

Learn More
We compare LDPC block and LDPC convolutional codes with respect to their decoding performance under low decoding latencies. Protograph based regular LDPC codes are considered with rather small lifting factors. LDPC block and convolutional codes are decoded using belief propagation. For LDPC convolutional codes, a sliding window decoder with different window(More)
Electronic systems of the future require a very high bandwidth communications infrastructure within the system. This way the massive amount of compute power which will be available can be inter-connected to realize future powerful advanced electronic systems. Today, electronic inter-connects between 3D chipstacks, as well as intra-connects within 3D(More)
Window decoding schedules are very attractive for message passing decoding of spatially coupled LDPC codes. They take advantage of the inherent convolutional code structure and allow continuous transmission with low decoding latency and complexity. In this paper we show that the decoding complexity can be further reduced if suitable message passing(More)
Spatially coupled low-density parity-check (SC-LDPC) codes are considered for transmission over the block-fading channel. The diversity order of the SC-LDPC codes is studied using density evolution and simulation results. We demonstrate that the diversity order of the code can be increased, without lowering the code rate, by simply increasing the coupling(More)
Low-density parity-check convolutional (LDPCC) codes, also known as spatially coupled LDPC codes, can be decoded using a message passing algorithm. In order to limit decoding latency and complexity, windowed decoding can be applied. Updates within the window can be performed either in parallel or serially. However, simulation results show that uniform(More)
This work focuses on the design of SC-LDPC codes for transmission over non-ergodic, block-fading channels. Our main contribution is an algorithm, allowing to start from a (J,K)-regular, uncoupled LDPC ensemble, from which one can recursively build up a protograph-based SC-LDPC ensemble having any target diversity order d. The diversity order is achieved(More)
Spatially-Coupled LDPC (SC-LDPC) codes have been recently shown to be very efficient for transmissions over nonergodic channels, in particular over block-fading channels [1]. In fact, it is possible to design a SC-LDPC code with any given code diversity [2]. In this work, we investigate the performance of SC-LDPC codes over block-fading channels, assuming a(More)
Enabling the vast computational and throughput requirements of future high performance computer systems and data centers requires innovative approaches. In this paper, we will focus on the communication between computer boards. One alternative to the bottleneck presented by copper wire based cable-bound communication is the deployment of wireless links(More)
Spatially coupled codes are a class of capacity achieving channel codes which, like polar codes, have been studied within the NEWCOM# Network of Excellence. We present the concept of spatial coupling, discuss various features that makes it attractive and finally point out its potential for scenarios beyond channel coding and point-to-point communications.(More)