Learn More
Germline intragenic mutations in PTEN are associated with 80% of patients with Cowden syndrome (CS) and 60% of patients with Bannayan-Riley-Ruvalcaba syndrome (BRRS). The underlying genetic causes remain to be determined in a considerable proportion of classic CS and BRRS without a polymerase chain reaction (PCR)-detectable PTEN mutation. We hypothesized(More)
Despite improved outcomes in multiple myeloma (MM), a cure remains elusive. However, even before the current therapeutic era, 5% of patients survived >10 years and we propose that immune factors contribute to this longer survival. We identified patients attending our clinic, who had survived >10 years (n=20) and analysed their blood for the presence of(More)
Friedreich ataxia is an autosomal recessive disorder caused by mutations in the FRDA gene that encodes a 210-amino acid protein called frataxin. An expansion of a GAA trinucleotide repeat in intron 1 of the gene is present in more than 95% of mutant alleles. Of the 83 people we studied who have mutations in FRDA, 78 are homozygous for an expanded GAA(More)
Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of cells that have been implicated as inhibitors of lymphopoiesis in patients with malignancies. They have a consensus phenotype of CD33+/CD11b+/HLA-DRlo/- and can be further divided into CD15 + granulocytic (G-MDSC) and CD14 + monocytic (M-MDSC) subsets. We characterized MDSCs in(More)
The transfer of membrane proteins between cells during contact, known as trogocytosis, can create novel cells with a unique phenotype and altered function. We demonstrate that trogocytosis is more common in multiple myeloma (MM) than chronic lymphocytic leukemia and Waldenstrom macroglobulinaemia; that T cells are more probable to be recipients than B or(More)
Most cases of Friedreich ataxia (FRDA) are due to expansions of a GAA trinucleotide repeat sequence in the FRDA gene coding for frataxin, a protein of poorly understood function which may regulate mitochondrial iron transport. However, between 1% and 5% of mutations are single base changes in the sequence of the FRDA gene, causing missense, nonsense, or(More)
The tumour suppressor gene PTEN, located at chromosome sub-band 10q23.3, encodes a dual-specificity phosphatase that negatively regulates the phosphatidylinositol 3'-kinase (PI3 K)/Akt-dependent cellular survival pathway. PTEN is frequently inactivated in many tumour types including glioblastoma, prostate and endometrial cancers. While initial studies(More)
C olorectal cancer (CRC) is the third most common cancer diagnosed in both men and women, and the second most common cause of cancer deaths in the United States. There were approximately 150 000 new cases resulting in 57 000 deaths in 2002. 1 CRC is one of the most studied cancer types and its underlying aetiology best elucidated. Colorectal tumorigenesis(More)
DNA mapping studies in two families provide further information on the Angelman syndrome critical region, which has recently been defined by the gene UBE3A. The first family has probable familial Angelman syndrome with a maternally imprinted inheritance pattern. A 5 year old girl with this disorder has a 14 year old brother and an 11 year old male cousin(More)
Germline and somatic PTEN mutations are found in Cowden syndrome (CS) and multiple sporadic malignancies, respectively. PTEN function appears to be modulated by subcellular compartmentalization, and mislocalization may affect function. We have shown that cellular ATP levels affect nuclear PTEN levels. Here, we examined the ATP-binding capabilities of PTEN(More)