Learn More
Animal models continue to improve our understanding of tinnitus pathogenesis and aid in development of new treatments. However, there are no diagnostic biomarkers for tinnitus-related pathophysiology for use in awake, freely moving animals. To address this disparity, two complementary methods were combined to examine reliable tinnitus models (rats(More)
The olfactory epithelium constitutes the sole source of regenerating neural cells that can be obtained from a living human. As such, primary cultures derived from human olfactory epithelial biopsies can be utilized to study neurobiological characteristics of individuals under different conditions and disease states. Here, using such human cultures, we(More)
The olfactory mucosa (OM) is a unique source of regenerative neural tissue that is readily obtainable from living human subjects and thus affords opportunities for the study of psychiatric illnesses. OM tissues can be used, either as ex vivo OM tissue or in vitro OM-derived neural cells, to explore parameters that have been difficult to assess in the brain(More)
Dopamine (DA) modulates the effects of amino acid neurotransmitters (AANs), including GABA and glutamate, in motor, visual, olfactory, and reward systems (Hnasko et al., 2010; Stuber et al., 2010; Hnasko and Edwards, 2012). The results suggest that DA may play a similar modulatory role in the auditory pathways. Previous studies have shown that deafness(More)
  • 1