Learn More
Protein tyrosine nitration is a prevalent post-translational modification which occurs as a result of oxidative and nitrative stress, it may be directly involved in the onset and/or progression of diseases. Considering the existence of nano titanium dioxide (TiO(2)) in environment and sunscreen products along with the high content of nitrite in sweat, the(More)
It has been suggested that the aggregation and cytotoxicity of amyloid-β (Aβ) peptide with transition-metal ions in neuronal cells is involved in the development and progression of Alzheimer's disease (AD). As the most abundant protein in blood plasma and in cerebrospinal fluid, human serum albumin (HSA) can bind Aβ in vivo and subsequently inhibit Aβ(More)
The dysfunction and further damage of endothelium play an important role in the development and progression of diabetic vascular complications. Protein tyrosine nitration is involved in endothelial cell injury induced by high glucose. Little is known about protein nitration in human umbilical vein endothelial cells (ECV304) induced by high glucose. In the(More)
Protein tyrosine nitration is a common post-translational modification occurring under conditions of nitrative/oxidative stress in a number of diseases. It has been found that in the presence of nitrite and hydrogen peroxide, hemoprotein catalyzes protein tyrosine nitration. In this paper, it was found that in heart homogenate, protein nitration and(More)
BACKGROUND It is demonstrated that levels of protein-bound chlorotyrosine, nitrotyrosine and myeloperoxidase (MPO), a protein that catalyzes generation of chlorinating and nitrating oxidants, serve as independent predictors of cardiovascular disease. METHODS Immunoprecipitation and Western blot were used to analyze protein concentration, nitration and(More)
Many studies have reported that oxidative and nitrative stress might be important in the pathogenesis of diabetes. By means of immunoprecipitation analysis, alpha-enolase (EC 4.2.1.11, 2-phospho-d-glycerate hydrolyase) was identified as the important target for oxidative and nitrative modifications in diabetic cardiac proteins. The levels of protein(More)
Excessive tissue iron levels are associated with the increase of oxidative/nitrative stress which contributes to tissue damage that may elevate the risk of diabetes. Therefore, we investigated the effects of iron on diabetes-associated liver injury and whether iron-related tyrosine nitration participated in this process. Rats were randomly divided into four(More)
Many studies reported that oxidative and nitrative stress might be important in the pathogenesis of diabetes and the development of its complications. In this study, we showed that α-enolase (EC 4.2.1.11, 2-phospho-d-glycerate hydrolase) was identified as the important target for oxidative and nitrative modifications in diabetic hepatic proteins. After 6(More)
Amyloid β-peptide (Aβ) aggregation in the brain, known as amyloid plaques, is a pathological feature of Alzheimer's disease (AD). Recent studies show that heme binds to the His residue of Aβ with the iron center and subsequently forms an Aβ-heme complex, which can inhibit Aβ aggregation. Although Tyr-10 was not the residue binding heme, the key roles for(More)
Evidence to support the role of heme proteins as major inducers of oxidative damage is increasingly present. Flavonoids have been widely used to ameliorate oxidative damage in vivo and in vitro, where the mechanism of this therapeutic action was usually dependent on their anti-oxidant effects. In this study, we investigated the influence of (+)-catechin, a(More)