Learn More
NCBI's Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function(More)
The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) is an international public repository for high-throughput microarray and next-generation sequence functional genomic data sets submitted by the research community. The resource supports archiving of raw data, processed data and metadata which are indexed, cross-linked and searchable. All(More)
Three-dimensional (3D) structure is now known for a large fraction of all protein families. Thus, it has become rather likely that one will find a homolog with known 3D structure when searching a sequence database with an arbitrary query sequence. Depending on the extent of similarity, such neighbor relationships may allow one to infer biological function(More)
NCBI's Conserved Domain Database (CDD) is a collection of multiple sequence alignments and derived database search models, which represent protein domains conserved in molecular evolution. The collection can be accessed at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, and is also part of NCBI's Entrez query and retrieval system, cross-linked to(More)
Although the introduction of highly active antiretroviral therapy (HAART) has led to a significant reduction in AIDS-related morbidity and mortality, unfortunately, many patients discontinue their initial HAART regimen, resulting in development of viral resistance. During HIV infection, the viral activator Tat is needed for viral progeny formation, and the(More)
The cyclin-dependent kinase 2 (cdk2) is a serine/threonine protein kinase that plays a key role in the cell cycle control system of all eukaryotic organisms. It has been a much studied drug target for potential anticancer therapy. Most cdk2 inhibitors in clinical development target almost exclusively the catalytic ATP-binding pocket of cdk2. However,(More)
Our goal is to develop accurate electrostatic models that can be implemented in current computational protein design protocols. To this end, we improve upon a previously reported pairwise decomposable, finite difference Poisson-Boltzmann (FDPB) model for protein design (Marshall et al., Protein Sci 2005, 14, 1293). The improvement involves placing generic(More)
We adapt a combinatorial optimization algorithm, extremal optimization (EO), for the search problem in computational protein design. This algorithm takes advantage of the knowledge of local energy information and systematically improves on the residues that have high local energies. Power-law probability distributions are used to select the backbone sites(More)
  • 1