Learn More
Tankyrase (TNKS) is a telomere-associated poly-ADP ribose polymerase (PARP) that has been implicated along with several telomere repeat binding factors in the regulation of Epstein-Barr virus origin of plasmid replication (OriP). We now show that TNKS1 can bind to the family of repeats (FR) and dyad symmetry regions of OriP by using a chromatin(More)
Lipid infusion and high fat feeding are established causes of systemic and adipose tissue insulin resistance. In this study, we treated 3T3-L1 adipocytes with a mixture of free fatty acids (FFAs) to investigate the molecular mechanisms underlying fat-induced insulin resistance. FFA treatment impaired insulin receptor-mediated signal transduction and(More)
The poly(ADP-ribose) polymerase (PARP) tankyrase-1 contains an ankyrin-repeat domain that binds to various partners, including the telomeric protein TRF1 (telomere-repeat-binding factor 1) and the vesicular protein IRAP (insulin-responsive aminopeptidase). TRF1 binding recruits tankyrase-1 to telomeres and allows its PARP activity to regulate telomere(More)
PARsylation [poly(ADP-ribosyl)ation] of proteins is implicated in the regulation of diverse physiological processes. Tankyrase is a molecular scaffold with this catalytic activity and has been proposed as a regulator of vesicular trafficking on the basis, in part, of its Golgi localization in non-polarized cells. Little is known about tankyrase localization(More)
OBJECTIVE Tankyrase (TNKS) is a Golgi-associated poly-ADP-ribose polymerase that is implicated in the regulation of GLUT4 trafficking in 3T3-L1 adipocytes. Its chromosomal locus 8p23.1 is linked to monogenic forms of diabetes in certain kindred. We hypothesize that TNKS is involved in energy homeostasis in mammals. RESEARCH DESIGN AND METHODS Gene-trap(More)
The glucose transporter GLUT4 and the aminopeptidase IRAP (insulin-responsive aminopeptidase) are the major cargo proteins of GSVs (GLUT4 storage vesicles) in adipocytes and myocytes. In the basal state, most GSVs are sequestered in perinuclear and other cytosolic compartments. Following insulin stimulation, GSVs undergo exocytic translocation to insert(More)
Pluripotency of embryonic stem cells (ESCs) is defined by their ability to differentiate into three germ layers and derivative cell types and is established by an interactive network of proteins including OCT4 (also known as POU5F1; ref. 4), NANOG (refs 5, 6), SOX2 (ref. 7) and their binding partners. The forkhead box O (FoxO) transcription factors are(More)
The assembly and function of mitotic spindles require poly(ADP-ribosyl)ation of spindle components by tankyrase, a poly(ADP-ribose) polymerase that aggregates to spindle poles during mitosis. Tankyrase itself is phosphorylated during mitosis, but the kinases involved remain undefined. Herein we report that mitotic phosphorylation of tankyrase is abrogated(More)
Tankyrase-1 and -2 are closely related poly(ADP-ribose) polymerases that use an ankyrin-repeat domain to bind diverse proteins, including TRF (telomere-repeat binding factor)-1, IRAP (insulin-responsive aminopeptidase), and TAB182 (182-kDa tankyrase-binding protein). TRF1 binding allows tankyrase to regulate telomere dynamics in human cells, whereas IRAP(More)
Tankyrase 1 and tankyrase 2 are poly(ADP-ribosyl)ases that are distinguishable from other members of the enzyme family by the structural features of the catalytic domain, and the presence of a sterile α-motif multimerization domain and an ankyrin repeat protein-interaction domain. Tankyrases are implicated in a multitude of cellular functions, including(More)