Learn More
MicroRNAs (miRNAs) are a novel class of small non-coding RNAs that negatively regulate gene expression at the posttranscriptional level by binding to the 3' untranslated region of target mRNAs leading to their translational inhibition or sometimes degradation. We uncovered a previously unknown alteration in temporal expression of a large set of miRNAs(More)
OBJECTIVE To investigate whether phospholipase A2 (PLA2) plays a role in the pathogenesis of spinal cord injury (SCI). METHODS Biochemical, Western blot, histological, immunohistochemical, electron microscopic, electrophysiological, and behavior assessments were performed to investigate (1) SCI-induced PLA2 activity, expression, and cellular localization(More)
Secondary damage following primary spinal cord injury extends pathology beyond the site of initial trauma, and effective management is imperative for maximizing anatomical and functional recovery. Bisperoxovanadium compounds have proven neuroprotective effects in several central nervous system injury/disease models, however, no mechanism has been linked to(More)
Phospholipases A(2) (PLA(2)) are group of enzymes that hydrolyze membrane phospholipids at the sn-2 position. PLA(2) are present in the brain and spinal cord and are implicated in several neurological disorders. Previously, we showed that PLA(2) activity increases following traumatic spinal cord injury and injection of group III secretory PLA(2)(More)
MicroRNAs (miRNAs) are a novel class of small noncoding RNAs that negatively regulate gene expression at the posttranscriptional level by binding to the 3'-untranslated region of target mRNAs leading to their translational inhibition or sometimes degradation. MiRNAs are predicted to control the activity of at least 20-30% of human protein-coding genes.(More)
Phospholipases A(2) (PLA(2)s) are a diverse family of lipolytic enzymes which hydrolyze the acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. These products are precursors of bioactive eicosanoids and platelet-activating factor which have been implicated in pathological states of numerous acute and(More)
OBJECTIVE The objective of this study was to investigate whether cytosolic phospholipase A2 (cPLA2 ), an important isoform of PLA2 that mediates the release of arachidonic acid, plays a role in the pathogenesis of spinal cord injury (SCI). METHODS A combination of molecular, histological, immunohistochemical, and behavioral assessments were used to test(More)
Secretory phospholipases A(2) (sPLA(2)s) are a subfamily of lipolytic enzymes which hydrolyze the acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. These products are precursors of bioactive eicosanoids and platelet-activating factor (PAF). The hydrolysis of membrane phospholipids by PLA(2) is a(More)
Treatment with testosterone is neuroprotective/neurotherapeutic after a variety of motoneuron injuries. Here we assessed whether testosterone might have similar beneficial effects after spinal cord injury (SCI). Young adult female rats received either sham or T9 spinal cord contusion injuries and were implanted with blank or testosterone-filled Silastic(More)
Descending propriospinal neurons (DPSN) are known to establish functional relays for supraspinal signals, and they display a greater growth response after injury than do the long projecting axons. However, their regenerative response is still deficient due to their failure to depart from growth supportive cellular transplants back into the host spinal cord,(More)