Learn More
G protein-coupled receptors (GPCRs) mediate our sense of vision, smell, taste, and pain. They are also involved in cell recognition and communication processes, and hence have emerged as a prominent superfamily for drug targets. Unfortunately, the atomic-level structure is available for only one GPCR (bovine rhodopsin), making it difficult to use(More)
The first step in the perception of an odor is the activation of one or more olfactory receptors (ORs) following binding of the odorant molecule to the OR. In order to initiate the process of determining how the molecular level receptor-odorant interactions are related to odor perception, we used the MembStruk computational method to predict the(More)
G-protein-coupled receptors (GPCRs) are involved in cell communication processes and with mediating such senses as vision, smell, taste, and pain. They constitute a prominent superfamily of drug targets, but an atomic-level structure is available for only one GPCR, bovine rhodopsin, making it difficult to use structure-based methods to design(More)
Although glycosaminoglycans contribute to diverse physiological processes, an understanding of their molecular mechanisms has been hampered by the inability to access homogeneous glycosaminoglycan structures. Here, we assembled well-defined chondroitin sulfate oligosaccharides using a convergent, synthetic approach that permits installation of sulfate(More)
A major challenge in the application of structure-based drug design methods to proteins belonging to the superfamily of G protein-coupled receptors (GPCRs) is the paucity of structural information (1). The 19 chemokine receptors, belonging to the Class A family of GPCRs, are important drug targets not only for autoimmune diseases like multiple sclerosis but(More)
To help improve the accuracy of protein-ligand docking as a useful tool for drug discovery, we developed MPSim-Dock, which ensures a comprehensive sampling of diverse families of ligand conformations in the binding region followed by an enrichment of the good energy scoring families so that the energy scores of the sampled conformations can be reliably used(More)
It has been observed that some ligands cause receptors to selectively interact with subsets of signaling proteins to 'bias' their signaling; this is inconsistent with receptors forming a single active state. Here we review the concept of receptor conformation ensembles that can account for a given agonist showing varied efficacies for different signaling(More)
Ž. We describe the implementation of the cell multipole method CMM in a Ž. Ž. complete molecular dynamics MD simulation program MPSim for massively parallel supercomputers. Tests are made of how the program scales with size Ž. Ž. linearly and with number of CPUs nearly linearly in applications involving up to 10 7 particles and up to 500 CPUs. Applications(More)
We used the MembStruk first principles computational technique to predict the three-dimensional (3-D) structure of six mouse olfactory receptors (S6, S18, S19, S25, S46 and S50) for which experimental odorant recognition profiles are available for a set of 24 odorants (4-9 carbons aliphatic alcohols, acids, bromo-acids and diacids). We used the HierDock(More)
Despite recent advances in targeted therapies, patients with pancreatic adenocarcinoma continue to have poor survival highlighting the urgency to identify novel therapeutic targets. Our previous investigations have implicated chemokine receptor CXCR4 and its selective ligand CXCL12 in the pathogenesis and progression of pancreatic intraepithelial neoplasia(More)