Learn More
This paper proposes a new adaptive neural network based control scheme for switched linear systems with parametric uncertainty and external disturbance. A key feature of this scheme is that the prior information of the possible upper bound of the uncertainty is not required. A feedforward neural network is employed to learn this upper bound. The adaptive(More)
For a four wheeled mobile robot a trajectory tracking concept is developed based on its kinematics. A trajectory is a time–indexed path in the plane consisting of position and orientation .The mobile robot is modeled as a non holonomic system subject to pure rolling , no slip constraints.To facilitate the controller design the kinematic equation can be(More)
The application of quadratic optimization and sliding-mode approach is considered for hybrid position and force control of a robot manipulator. The dynamic model of the manipulator is transformed into a state-space model to contain two sets of state variables, where one describes the constrained motion and the other describes the unconstrained motion. The(More)
In this paper, a novel framework is presented to recover the 3D shape information of a complex surface using its texture-less stereo images. First a linear and generalized Lambertian model is proposed to obtain the depth information by shape from shading (SfS) using an image from stereo pair. Then this depth data is corrected by integrating scale invariant(More)