Learn More
Cardiac hypertrophy is a multifactorial disease characterized by multiple molecular alterations. One of these alterations is change in the activity of Akt, which plays a central role in regulating a variety of cellular processes ranging from cell survival to aging. Akt activation is mainly achieved by its binding to phosphatidylinositol(More)
Sirtuins are emerging as key regulators of many cellular functions including metabolism, cell growth, apoptosis, and genetic control of ageing. In mammals there are seven sirtuin analogues, SIRT1 to SIRT7. Among them SIRT3 is unique because this is the only analogue whose increased expression has been found to be associated with extended lifespan of humans.(More)
Mitochondrial morphology is regulated by the balance between two counteracting mitochondrial processes of fusion and fission. There is significant evidence suggesting a stringent association between morphology and bioenergetics of mitochondria. Morphological alterations in mitochondria are linked to several pathological disorders, including cardiovascular(More)
Honokiol (HKL) is a natural biphenolic compound derived from the bark of magnolia trees with anti-inflammatory, anti-oxidative, anti-tumour and neuroprotective properties. Here we show that HKL blocks agonist-induced and pressure overload-mediated, cardiac hypertrophic responses, and ameliorates pre-existing cardiac hypertrophy, in mice. Our data suggest(More)
SIRT6 is a SIR2 family member that regulates multiple molecular pathways involved in metabolism, genomic stability, and aging. It has been proposed previously that SIRT6 is a tumor suppressor in cancer. Here, we challenge this concept by presenting evidence that skin-specific deletion of SIRT6 in the mouse inhibits skin tumorigenesis. SIRT6 promoted(More)
Newcastle disease virus (NDV), an avian paramyxovirus, induces apoptosis in chicken embryo fibroblast (CEF) cells. In the present investigation, the ability of haemagglutinin-neuraminidase (HN) protein of NDV to cause apoptosis in CEF cells was examined. The results revealed that cells expressing the HN protein demonstrated decreased DNA content,(More)
Cardiac myosin binding protein-C (cMyBP-C) plays a role in sarcomeric structure and stability, as well as modulating heart muscle contraction. The 150 kDa full-length (FL) cMyBP-C has been shown to undergo proteolytic cleavage during ischemia–reperfusion injury, producing an N-terminal 40 kDa fragment (mass 29 kDa) that is predominantly associated with(More)
  • 1