Naga Rajesh Tummala

Learn More
Although carbon nanotubes have attracted enormous research interest, their practical application is still hindered, primarily, by the difficulty of separating them into samples monodispersed in diameter, chirality, and length. Recent advances show that ultracentrifugating carbon nanotube dispersions stabilized by surfactants is a promising route for(More)
The effect of substrate curvature on surfactant self-assembly has been studied using all-atom molecular-dynamics simulations. We studied aqueous sodium-dodecyl-sulfate (SDS) surfactants on graphite, on the outer surface of single walled carbon nanotubes (SWNTs) and within SWNTs. Our results reveal that although the chemical nature of the substrates is(More)
In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy(More)
In a variety of biological scenarios water is found trapped within hydrophobic environments (e.g., ion channels). Its behavior under such conditions is not well understood and therefore is attracting enormous scientific attention. It is of particular interest to understand how the confining environment affects both the structure and dynamics of water.(More)
The aggregate structure of sodium dodecyl sulfate (SDS) adsorbed at the graphite-water interface has been studied with the aid of molecular dynamics (MD) simulations. As expected, our results show that adsorbed SDS yields hemi-cylindrical micelles. The hemi-cylindrical aggregates in our simulations closely resemble all structural and morphological details(More)
VISTA, a configurable visualization and simulation tool, is designed to show the dynamic behavior of ATM switches. VISTA provides builtin support for two simulated switching architectures (tandem Banyan and shared bus), a parametric traffic generating model, four output buffering schemes (no buffering, pushout, buffer sharing, and selective discarding), and(More)
Techniques for separating bundles of carbon nanotubes into homogeneous dispersion are still under development, although a few methods have been successful at the laboratory scale. Understanding the effective interactions between carbon nanotubes in the presence of dispersing agents will provide the necessary information to develop better methods and also to(More)
Molecular and polymer packings in pure and mixed domains and at interfacial regions play an important role in the photoconversion processes occurring within bulk heterojunction organic solar cells (OSCs). Here, molecular dynamics simulations are used to investigate molecular packing in disordered (amorphous) phenyl-C70-butyric acid-methyl ester (PC71BM) and(More)
Understanding and controlling how carbon nanotubes interact with phospholipid membranes is necessary for preventing adverse effects of these relatively new, but still exciting, materials. Futuristic applications envision incorporating carbon nanotubes in liposomes for personalized medicine, controlled delivery, and imaging. Because of their ability to(More)
The effect of surface coverage on the aggregate structure for the nonionic hexaethylene glycol monododecyl ether (C(12)E(6)) and anionic sodium dodecyl sulfate (SDS) surfactants at vacuum-water interface has been studied using molecular dynamics simulations. We report the aggregate morphologies and various structural details of both surfactants as a(More)