Naeem Seliya

Learn More
For software quality estimation, software development practitioners typically construct quality-classification or fault prediction models using software metrics and fault data from a previous system release or a similar software project. Engineers then use these models to predict the fault proneness of software modules in development. Software quality(More)
A novel search-based approach to software quality modeling with multiple software project repositories is presented. Training a software quality model with only one software measurement and defect data set may not effectively encapsulate quality trends of the development organization. The inclusion of additional software projects during the training process(More)
Software metrics-based quality classification models predict a software module as either fault-prone (fp) or not fault-prone (nfp). Timely application of such models can assist in directing quality improvement efforts to modules that are likely to be fp during operations, thereby cost-effectively utilizing the software quality testing and enhancement(More)
The selection of software metrics for building software quality prediction models is a search-based software engineering problem. An exhaustive search for such metrics is usually not feasible due to limited project resources, especially if the number of available metrics is large. Defect prediction models are necessary in aiding project managers for better(More)
Current software quality estimation models often involve using supervised learning methods to train a software quality classifier or a software fault prediction model. In such models, the dependent variable is a software quality measurement indicating the quality of a software module by either a risk-based class membership (e.g., whether it is fault-prone(More)
We addresses the important problem of software quality analysis when there is limited software fault or fault-proneness data. A software quality model is typically trained using software measurement and fault data obtained from a previous release or similar project. Such an approach assumes that fault data is available for all the training modules. Various(More)
High-assurance and complex mission-critical software systems are heavily dependent on reliability of their underlying software applications. An early software fault prediction is a proven technique in achieving high software reliability. Prediction models based on software metrics can predict number of faults in software modules. Timely predictions of such(More)
The data mining and machine learning community is often faced with two key problems: working with imbalanced data and selecting the best features for machine learning. This paper presents a process involving a feature selection technique for selecting the important attributes and a data sampling technique for addressing class imbalance. The application(More)