Learn More
Alternative splicing plays crucial roles by influencing the diversity of the transcriptome and proteome and regulating protein structure/function and gene expression. It is widespread in plants, and alteration of the levels of splicing factors leads to a wide variety of growth and developmental phenotypes. The circadian clock is a complex piece of cellular(More)
Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT-PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts)(More)
More than 60% of intron-containing genes undergo alternative splicing (AS) in plants. This number will increase when AS in different tissues, developmental stages, and environmental conditions are explored. Although the functional impact of AS on protein complexity is still understudied in plants, recent examples demonstrate its importance in regulating(More)
Cotton, the leading natural fiber crop, is largely produced by two primary cultivated allotetraploid species known as Upland or American cotton ( Gossypium hirsutum L.) and Pima or Egyptian cotton ( G. barbadense L.). The allotetraploid species diverged from each other and from their diploid progenitors (A or D genome) through selection and domestication(More)
Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187 retrotransposon-specific SSAP markers, 29 NBS-LRR markers and 242 AFLP(More)
Transposable elements are ubiquitous genomic parasites with an ancient history of coexistence with their hosts. A few cases have emerged recently where these genetic elements have been recruited for normal function in the host organism. We have identified an expressed hobo/Ac/Tam (hAT) family transposase-like gene in cereal grasses which appears to(More)
Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both(More)
Multiple copies of transposable elements, inserted at random around the host genome, can be used as molecular markers. Sequence-specific amplification polymorphisms (SSAPs) amplify the region between a PCR primer site near the end of an element and an adjacent restriction site in the flanking genomic DNA. Each amplified insertion is revealed as a band on a(More)
The underlying mechanisms for hybrid vigor or heterosis are elusive. Here we report a population of recombinant inbred lines (RILs), derived from the two ecotypes, Col and Ler, which can serve as a permanent resource for studying the molecular basis of hybrid vigor in Arabidopsis. Using a North Carolina mating design III (NCIII), we determined the additive(More)
The most popular retrotransposon-based molecular marker system in use at the present time is the sequence-specific amplification polymorphism (SSAP) system . This system exploits the insertional polymorphism of long terminal repeat (LTR) retrotransposons around the genome. Because the LTR sequence is used to design primers for this method, its successful(More)