Nadine Unger

Learn More
Evaluating multicomponent climate change mitigation strategies requires knowledge of the diverse direct and indirect effects of emissions. Methane, ozone, and aerosols are linked through atmospheric chemistry so that emissions of a single pollutant can affect several species. We calculated atmospheric composition changes, historical radiative forcing, and(More)
Nitrate aerosols are expected to become more important in the future atmosphere due to the expected increase in nitrate precursor emissions and the decline of ammoniumsulphate aerosols in wide regions of this planet. The GISS climate model is used in this study, including atmospheric gasand aerosol phase chemistry to investigate current and future (2030,(More)
A model of atmospheric composition and climate has been developed at the NASA Goddard Institute for Space Studies (GISS) that includes composition seamlessly from the surface to the lower mesosphere. The model is able to capture many features of the observed magnitude, distribution, and seasonal cycle of trace species. The simulation is especially realistic(More)
Tropospheric O(3) and sulfate both contribute to air pollution and climate forcing. There is a growing realization that air quality and climate change issues are strongly connected. To date, the importance of the coupling between O(3) and sulfate has not been fully appreciated, and thus regulations treat each pollutant separately. We show that emissions of(More)
A much-cited bar chart provided by the Intergovernmental Panel on Climate Change displays the climate impact, as expressed by radiative forcing in watts per meter squared, of individual chemical species. The organization of the chart reflects the history of atmospheric chemistry, in which investigators typically focused on a single species of interest.(More)
Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed(More)
D. T. Shindell, G. Faluvegi, D. S. Stevenson, M. C. Krol, L. K. Emmons, J.-F. Lamarque, G. Pétron, F. J. Dentener, K. Ellingsen, M. G. Schultz, O. Wild, M. Amann, C. S. Atherton, D. J. Bergmann, I. Bey, T. Butler, J. Cofala, W. J. Collins, R. G. Derwent, R. M. Doherty, J. Drevet, H. J. Eskes, A. M. Fiore, M. Gauss, D. A. Hauglustaine, L. W. Horowitz, I. S.(More)
C R E D IT : IS T O C K P H O T O S .C O M T he push toward cleaner air in Beijing before the 2008 Olympic Games was a vivid reminder of the need to control air pollution, not only in Asia but in many regions of the world ( 1). There is mounting evidence for particleand ozone-related health effects ( 2, 3). Furthermore, ozone and aerosol particles affect(More)