Nadine R. Martinez Rodriguez

  • Citations Per Year
Learn More
Paneth cells residing at the base of the small intestinal crypts contribute to the mucosal intestinal first line defense by secreting granules filled with antimicrobial polypeptides including lysozyme. These cells derive from the columnar intestinal stem cell located at position 0 and the transit amplifying cell located at position +4 in the crypts. We have(More)
Marine organisms process and deliver many of their underwater coatings and adhesives as complex fluids. In marine mussels one such fluid, secreted during the formation of adhesive plaques, consists of a concentrated colloidal suspension of a mussel foot protein (mfp) known as Mfp-3S. The results of this study suggest that Mfp-3S becomes a complex fluid by a(More)
Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during(More)
Sessile marine mussels must "dry" underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bioinspired adhesion have largely been performed under applied compressive forces, but such studies are poor predictors of the ability of an adhesive to spontaneously penetrate surface(More)
Mytilus foot protein type 6 (mfp-6) is crucial for maintaining the reducing conditions needed for optimal wet adhesion in marine mussels. In this report, we describe the expression and production of a recombinant Mytilus californianus foot protein type 6 variant 1 (rmfp-6.1) fused with a hexahistidine affinity tag in Escherichia coli and its purification by(More)
Understanding the interactions between collagen and adhesive mussel foot proteins (mfps) can lead to improved medical and dental adhesives, particularly for collagen-rich tissues. Here we investigated interactions between collagen type-1, the most abundant load-bearing animal protein, and mussel foot protein-3 (mfp-3) using a quartz crystal microbalance and(More)
Mussel foot protein-1 (mfp-1) is an essential constituent of the protective cuticle covering all exposed portions of the byssus (plaque and the thread) that marine mussels use to attach to intertidal rocks. The reversible complexation of Fe(3+) by the 3,4-dihydroxyphenylalanine (Dopa) side chains in mfp-1 in Mytilus californianus cuticle is responsible for(More)
The 3,4-dihydroxyphenylalanine (Dopa)-containing proteins of marine mussels provide attractive design paradigms for engineering synthetic polymers that can serve as high performance wet adhesives and coatings. Although the role of Dopa in promoting adhesion between mussels and various substrates has been carefully studied, the context by which Dopa mediates(More)
Mussel adhesion to mineral surfaces is widely attributed to 3,4-dihydroxyphenylalanine (Dopa) functionalities in the mussel foot proteins (mfps). Several mfps, however, show a broad range (30-100%) of Tyrosine (Tyr) to Dopa conversion suggesting that Dopa is not the only desirable outcome for adhesion. Here, we used a partial recombinant construct of mussel(More)
  • 1