Learn More
Where do contracts - specification elements embedded in executable code - come from? To produce them, should we rely on the programmers, on automatic tools, or some combination? Recent work, in particular the Daikon system, has shown that it is possible to infer some contracts automatically from program executions. The main incentive has been an assumption(More)
Auto-active verifiers provide a level of automation intermediate between fully automatic and interactive: users supply code with annotations as input while benefiting from a high level of automation in the back-end. This paper presents AutoProof, a state-of-the-art auto-active verifier for object-oriented sequential programs with complex functional(More)
We present a method for synthesizing recursive functions that provably satisfy a given specification in the form of a polymorphic refinement type. We observe that such specifications are particularly suitable for program synthesis for two reasons. First, they offer a unique combination of expressive power and decidability, which enables automatic(More)
This paper reports on the experiences with the program verification competition held during the FoVeOOS conference in October 2011. There were 6 teams participating in this competition. We discuss the three different challenges that were posed and the solutions developed by the teams. We conclude with a discussion about the value of such competitions and(More)
Experience with lightweight formal methods suggests that programmers are willing to write specification if it brings tangible benefits to their usual development activities. This paper considers stronger specifications and studies whether they can be deployed as an incremental practice that brings additional benefits without being unacceptably expensive. We(More)
Modular reasoning about class invariants is challenging in the presence of collaborating objects that need to maintain global consistency. This paper presents semantic collaboration: a novel methodology to specify and reason about class invariants of sequential object-oriented programs, which models dependencies between collaborating objects by semantic(More)
Calculational proofs—proofs by stepwise formula manipulation—are praised for their rigor, readability, and elegance. It seems desirable to reuse this style, often employed on paper, in the context of mechanized reasoning, and in particular, program verification. This work leverages the power of SMT solvers to machine-check calculational proofs at the level(More)