Learn More
Mononuclear non-heme ferrous iron dependent oxygenases and oxidases constitute an extended enzyme family that catalyze a wide range of oxidation reactions. The largest known sub-group employs 2-oxoglutarate as a cosubstrate and catalysis by these and closely related enzymes is proposed to proceed via a ferryl intermediate coordinated to the active site via(More)
Janus kinases (JAKs) are key effectors in controlling immune responses and maintaining hematopoiesis. SOCS3 (suppressor of cytokine signaling-3) is a major regulator of JAK signaling and here we investigate the molecular basis of its mechanism of action. We found that SOCS3 bound and directly inhibited the catalytic domains of JAK1, JAK2, and TYK2 but not(More)
Multi-subunit Cullin-RING E3 ligases often use repeat domain proteins as substrate-specific adaptors. Structures of these macromolecular assemblies are determined for the F-box-containing leucine-rich repeat and WD40 repeat families, but not for the suppressor of cytokine signaling (SOCS)-box-containing ankyrin repeat proteins (ASB1-18), which assemble with(More)
2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components and in the hydroxylation of transcription factors and splicing factor proteins. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA and ribosomal proteins have been shown to be(More)
The ultimate step in the biosynthesis of the medicinally important beta-lactamase inhibitor clavulanic acid is catalyzed by clavulanic acid dehydrogenase (CAD). CAD is responsible for the NAPDH-dependent reduction of the unstable intermediate clavulanate-9-aldehyde to yield clavulanic acid. Here, we report biochemical and structural studies on CAD.(More)
Since it possesses a 3-methyl group, phytanic acid is degraded by a peroxisomal alpha-oxidation pathway, the first step of which is catalyzed by phytanoyl-CoA 2-hydroxylase (PAHX). Mutations in human PAHX cause phytanic acid accumulations leading to Adult Refsum's Disease (ARD), which is also observed in a sterol carrier protein 2 (SCP-2)-deficient mouse(More)
Refsum's disease is a neurological syndrome characterized by adult-onset retinitis pigmentosa, anosmia, sensory neuropathy and phytanic acidaemia. Many cases are caused by mutations in peroxisomal oxygenase phytanoyl-CoA 2-hydroxylase (PAHX) which catalyses the initial alpha-oxidation step in the degradation of phytanic acid. Both pro and mature forms of(More)
The eight SOCS (Suppressor of Cytokine Signaling) proteins encoded in the human genome all contain a C-terminal domain, the SOCS box, that allows them to function as E3 ubiquitin ligases and thereby catalyze the ubiquitination of components of the JAK/STAT signaling pathway. This activity is key to their function as cytokine signaling inhibitors as, once(More)
JAKs (Janus kinases) are essential mediators of almost all biological signalling events initiated by haemopoietic and immune cytokines. However, aberrant and/or prolonged JAK-induced signalling is detrimental and can give rise to a number of inflammatory and proliferative pathologies. For this reason, the tyrosine kinase activity of the JAKs is carefully(More)
The orf6 gene from the clavulanic acid biosynthesis gene cluster encodes an OAT (ornithine acetyltransferase). Similar to other OATs the enzyme has been shown to catalyse the reversible transfer of an acetyl group from N-acetylornithine to glutamate. OATs are Ntn (N-terminal nucleophile) enzymes, but are distinct from the better-characterized Ntn hydrolase(More)