#### Filter Results:

#### Publication Year

2004

2011

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

— Modular robots consist of many small units that attach together and can perform local motions. By combining these motions, we can achieve a reconfiguration of the global shape. The term modular comes from the idea of grouping together a fixed number of units into a module, which behaves as a larger individual component. Recently, a fair amount of research… (More)

- Zachary Abel, Nadia Benbernou, Mirela Damian, Erik D. Demaine, Martin L. Demaine, Robin Y. Flatland +2 others
- SODA
- 2010

We introduce the problem of <i>shape replication</i> in the Wang tile self-assembly model. Given an input shape, we consider the problem of designing a self-assembly system which will replicate that shape into either a specific number of copies, or an unbounded number of copies. Motivated by practical DNA implementations of Wang tiles, we consider a model… (More)

We present a universal crease pattern—known in geometry as the tetrakis tiling and in origami as box pleating—that can fold into any object made up of unit cubes joined face-to-face (polycubes). More precisely, there is one universal finite crease pattern for each number n of unit cubes that need to be folded. This result contrasts previous universality… (More)

(2011). Planning to fold multiple objects from a single self-folding sheet. SUMMARY This paper considers planning and control algorithms that enable a programmable sheet to realize different shapes by autonomous folding. Prior work on self-reconfiguring machines has considered modular systems in which independent units coordinate with their neighbors to… (More)

The empty space around n disjoint line segments in the plane can be partitioned into n + 1 convex faces by extending the segments in some order. The dual graph of such a partition is the plane graph whose vertices correspond to the n + 1 convex faces, and every segment end-point corresponds to an edge between the two incident faces on opposite sides of the… (More)

We address the question: How many edge guards are needed to guard an orthogonal polyhedron of e edges, r of which are reflex? It was previously established [3] that e/12 are sometimes necessary and e/6 always suffice. In contrast to the closed edge guards used for these bounds, we introduce a new model, open edge guards (excluding the endpoints of the… (More)

We define a notion for unfolding smooth, ruled surfaces, and prove that every smooth prismatoid (the convex hull of two smooth curves lying in parallel planes), has a nonoverlapping " volcano unfolding. " These un-foldings keep the base intact, unfold the sides outward, splayed around the base, and attach the top to the tip of some side rib. Our result… (More)

The Hexachordal Theorem may be interpreted in terms of scales, or rhythms, or as abstract mathematics. In terms of scales it claims that the complement of a chord that uses half the pitches of a scale is homometric to—i.e., has the same interval structure as—the original chord. In terms of onsets it claims that the complement of a rhythm with the same… (More)

- Nadia Benbernou
- 2006