Learn More
The mosaic-structured Vibrio cholerae genome points to the importance of horizontal gene transfer (HGT) in the evolution of this human pathogen. We showed that V. cholerae can acquire new genetic material by natural transformation during growth on chitin, a biopolymer that is abundant in aquatic habitats (e.g., from crustacean exoskeletons), where it lives(More)
To optimize the utilization of photosynthate and avoid damage that can result from the absorption of excess excitation energy, photosynthetic organisms must rapidly modify the synthesis and activities of components of the photosynthetic apparatus in response to environmental cues. During nutrient-limited growth, cyanobacteria degrade their light-harvesting(More)
The factors that enhance the transmission of pathogens during epidemic spread are ill defined. Water-borne spread of the diarrhoeal disease cholera occurs rapidly in nature, whereas infection of human volunteers with bacteria grown in vitro is difficult in the absence of stomach acid buffering. It is unclear, however, whether stomach acidity is a principal(More)
Vibrio cholerae causes a severe diarrhoeal disease by secreting a toxin during colonization of the epithelium in the small intestine. Whereas the initial steps of the infectious process have been intensively studied, the last phases have received little attention. Confocal microscopy of V. cholerae O1-infected rabbit ileal loops captured a distinctive stage(More)
A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model(More)
(5), can be achieved through sequence (23) or regulatory (24) changes in the core genome. Nonetheless, given their prevalence, mobility, and expression under relevant conditions, islands likely play a role in adaptation, but on shorter time scales, or more local spatial scales, in the context of large populations that harbor substantial genomic variability.(More)
  • 1