Learn More
AMPK (AMP-activated protein kinase) signalling plays a key role in whole-body energy homoeostasis, although its precise role in pancreatic β-cell function remains unclear. In the present stusy, we therefore investigated whether AMPK plays a critical function in β-cell glucose sensing and is required for the maintenance of normal glucose homoeostasis. Mice(More)
BACKGROUND The human 6-16 and ISG12 genes are transcriptionally upregulated in a variety of cell types in response to type I interferon (IFN). The predicted products of these genes are small (12.9 and 11.5 kDa respectively), hydrophobic proteins that share 36% overall amino acid identity. Gene disruption and over-expression studies have so far failed to(More)
Glucose intolerance in C57Bl/6 mice has been associated with mutations in the nicotinamide nucleotide transhydrogenase (Nnt) gene. It has been proposed that the absence of NNT from mitochondria leads to increased mitochondrial reactive oxygen species production and subsequent activation of uncoupling protein 2 (UCP2). Activation of UCP2 has been suggested(More)
Leak of protons into the mitochondrial matrix during substrate oxidation partially uncouples electron transport from phosphorylation of ADP, but the functions and source of basal and inducible proton leak in vivo remain controversial. In the present study we describe an endogenous activation of proton conductance in mitochondria isolated from rat and mouse(More)
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1beta (PGC-1beta) has been implicated in important metabolic processes. A mouse lacking PGC-1beta (PGC1betaKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1betaKO mice are generally viable and metabolically healthy.(More)
Mild uncoupling of oxidative phosphorylation, caused by a leak of protons back into the matrix, limits mitochondrial production of ROS (reactive oxygen species). This proton leak can be induced by the lipid peroxidation products of ROS, such as HNE (4-hydroxynonenal). HNE activates uncoupling proteins (UCP1, UCP2 and UCP3) and ANT (adenine nucleotide(More)
Mitochondria generate reactive oxygen species, whose downstream lipid peroxidation products, such as 4-hydroxynonenal, induce uncoupling of oxidative phosphorylation by increasing proton leak through mitochondrial inner membrane proteins such as the uncoupling proteins and adenine nucleotide translocase. Using mitochondria from rat liver, which lack(More)
Leptin reduces body weight in ob/ob mice by decreasing food intake and increasing energy expenditure; however, the mechanisms by which it does the latter are not known. Here we report that 30% of the weight loss induced by leptin treatment of ob/ob mice is due to changes in energy expenditure. In assessing leptin's effects on specific tissues, we found that(More)
Skeletal muscle constitutes the major site of glucose uptake leading to increased removal of glucose from the circulation in response to insulin. Type 2 diabetes and obesity are often associated with insulin resistance that can be counteracted by exercise or the use of drugs increasing the relative proportion of oxidative fibers. RIP140 is a transcriptional(More)