Learn More
Sensitivity to polarized light is widespread among marine animals, including crustaceans, cephalopods and some fishes. They use this ability to orient and find prey, and possibly for a number of other visual tasks. Unlike the ultraviolet-sensitive polarization receptors of most insects, the polarization receptors of marine invertebrates tend to be maximally(More)
Cephalopods are sensitive to the linear polarization characteristics of light. To examine if this polarization sensitivity plays a role in the predatory behavior of cuttlefish, we examined the preference of Sepia officinalis when presented with fish whose polarization reflection was greatly reduced versus fish whose polarization reflection was not affected.(More)
Visual function and its specialization at the level of the retina were studied in 13 species of stomatopod crustaceans, representing three superfamilies: Gonodactyloidea, Lysiosquilloidea, and Squilloidea. We measured attenuation and irradiance spectra in the environment of each species, at the actual depths and times of activity where we observed(More)
Shallow-water zooplanktivorous fish rely on their vision for foraging. In shallow water, feeding efficiency decreases in dim light and thus the fish cease foraging at crepuscular hours. Creatures living in the lower parts of their depth ranges are expected to be exposed to limited light levels for longer hours. However, observations of the zooplanktivore(More)
This paper is the result of an international initiative and is a first attempt to develop guidelines for the care and welfare of cephalopods (i.e. nautilus, cuttlefish, squid and octopus) following the inclusion of this Class of ∼700 known living invertebrate species in Directive 2010/63/EU. It aims to provide information for investigators, animal care(More)
Squids have a wide repertoire of body patterns; these patterns contain visual signals assembled from a highly diverse inventory of chromatic, postural, and locomotor components. The chromatic components reflect the activity of dermal chromatophore organs that, like the postural and locomotor muscles, are controlled directly from the central nervous system.(More)
Chironomids (Diptera: Chironomidae; non-biting midges) are known to be carriers of the Vibrio cholerae bacterium, responsible for the fatal cholera disease in humans. It was recently discovered that chironomid females choose their oviposition site by a visual cue. In this study, we test the hypothesis that this visual cue is the linear polarization of light(More)
1) Corresponding author’s address: Department of Biology, Millersville University of Pennsylvania, P.O. Box 1002, Millersville, PA 17555-0302, USA, jean.boal@millersville.edu 2) Hebrew University of Jerusalem, ESE Department, Interuniversity Institute for Marine Sciences, P.O. Box. 469, Eilat 88103, Israel, nadavs@cc.huji.ac.il 3) Boston University Marine(More)
Cuttlefish rapidly change their appearance in order to camouflage on a given background in response to visual parameters, giving us access to their visual perception. Recently, it was shown that isolated edge information is sufficient to elicit a body pattern very similar to that used when a whole object is present. Here, we examined contour completion in(More)