Learn More
The ability to detect rare auditory events can be critical for survival. We report here that neurons in cat primary auditory cortex (A1) responded more strongly to a rarely presented sound than to the same sound when it was common. For the rare stimuli, we used both frequency and amplitude deviants. Moreover, some A1 neurons showed hyperacuity for frequency(More)
Neurons in primary auditory cortex (A1) of cats show strong stimulus-specific adaptation (SSA). In probabilistic settings, in which one stimulus is common and another is rare, responses to common sounds adapt more strongly than responses to rare sounds. This SSA could be a correlate of auditory sensory memory at the level of single A1 neurons. Here we(More)
Grid cells provide a neural representation of space, by discharging when an animal traverses through the vertices of a periodic hexagonal grid spanning the environment. Although grid cells have been characterized in detail in rats, the fundamental question of what neural dynamics give rise to the grid structure remains unresolved. Two competing classes of(More)
Neurons in sensory cortices are often assumed to be "feature detectors", computing simple and then successively more complex features out of the incoming sensory stream. These features are somehow integrated into percepts. Despite many years of research, a convincing candidate for such a feature in primary auditory cortex has not been found. We argue that(More)
The responses of primary auditory cortex (A1) neurons to pure tones in anesthetized animals are usually described as having mostly narrow, unimodal frequency tuning and phasic responses. Thus A1 neurons are believed not to carry much information about pure tones beyond sound onset. In awake cats, however, tuning may be wider and responses may have(More)
Animals using active sensing systems such as echolocation or electrolocation may experience interference from the signals of neighbouring conspecifics, which can be offset by a jamming avoidance response (JAR). Here, we report JAR in one echolocating bat (Tadarida teniotis: Molossidae) but not in another (Taphozous perforatus: Emballonuridae) when both flew(More)
Most theories of navigation rely on the concept of a mental map and compass. Hippocampal place cells are neurons thought to be important for representing the mental map; these neurons become active when the animal traverses a specific location in the environment (the "place field"). Head-direction cells are found outside the hippocampus, and encode the(More)
The "place fields" of hippocampal pyramidal neurons are not static. For example, upon a contextual change in the environment, place fields may "remap" within typical timescales of ~ 1 min. A few studies have shown more rapid dynamics in hippocampal activity, linked to internal processes, such as switches between spatial reference frames or changes within(More)
Many animals, on air, water, or land, navigate in three-dimensional (3D) environments, yet it remains unclear how brain circuits encode the animal's 3D position. We recorded single neurons in freely flying bats, using a wireless neural-telemetry system, and studied how hippocampal place cells encode 3D volumetric space during flight. Individual place cells(More)
Is centering a stimulus in the field of view an optimal strategy to localize and track it? We demonstrated, through experimental and computational studies, that the answer is no. We trained echolocating Egyptian fruit bats to localize a target in complete darkness, and we measured the directional aim of their sonar clicks. The bats did not center the sonar(More)