Nabanita S. Datta

Learn More
Cancer cells are able to proliferate at accelerated rates within the confines of a three-dimensional (3D) extracellular matrix (ECM) that is rich in type I collagen. The mechanisms used by tumor cells to circumvent endogenous antigrowth signals have yet to be clearly defined. We find that the matrix metalloproteinase, MT1-MMP, confers tumor cells with a(More)
Eight new cases of autopsy-confirmed or suspected neonatal adrenoleukodystrophy (NALD) are presented together with new biochemical data on very-long-chain fatty acids (VLCFA) and plasmalogens and a review of all previously published cases. The clinical, biochemical, and histopathologic abnormalities characteristic of this newly recognized form of(More)
Parathyroid hormone-related protein (PTHrP) regulates proliferation and differentiation of osteoblastic cells via binding to the parathyroid hormone receptor (PTH-1R). The cAMP-dependent protein kinase A pathway governs the majority of these effects, but recent evidence also implicates the MAPK pathway. MC3T3-E1 subclone 4 cells (MC4) were treated with the(More)
Prostate cancer almost exclusively metastasizes to skeletal sites, indicating that the bone provides a favorable microenvironment for its localization and progression. A natural yet understudied factor in bone that could facilitate tumor localization is elevated extracellular calcium ([Ca2+]o). The present study found that elevated [Ca2+]o (2.5 mmol/L)(More)
Rap1, a growth regulatory protein that is strongly expressed in human squamous cell carcinoma (SCC), is inactivated by rap1GAP. Recent evidence in normal rat cells suggests that rap1GAP regulates proliferation. The objective of the current study was to investigate whether rap1GAP functions as a tumor suppressor in SCC. Using a pull-down assay, active(More)
The pathways that regulate the S-phase events associated with the control of DNA replication are poorly understood. The bone marrow megakaryocytes are unique in that they leave the diploid (2C) state to differentiate, synthesizing 4 to 64 times the normal DNA content within a single nucleus, a process known as endomitosis. Human erythroleukemia (HEL) cells(More)
We have shown previously that mitotic spindle inhibitors allow the c-Myconcoprotein to uncouple mitosis from DNA synthesis, resulting in the acquisition of tetraploidy. This can also occur in the absence of spindle inhibition if c-Myc deregulation is combined with inactivation of the p53 tumor suppressor. Under these conditions, cyclin B1 protein is induced(More)
Patients with the cerebrohepatorenal syndrome of Zellweger lack peroxisomes and certain peroxisomal enzymes such as dihydroxyacetone phosphate acyltransferase in their tissues. Deficiency of this enzyme, which is necessary for glycerol ether lipid synthesis, provides a biochemical method for recognizing patients with subtle manifestations of Zellweger(More)
The striking clinical benefit of PTH in osteoporosis began a new era of skeletal anabolic agents. Several studies have been performed, new studies are emerging out and yet controversies remain on PTH anabolic action in bone. This review focuses on the molecular aspects of PTH and PTHrP signaling in light of old players and recent advances in understanding(More)
UNLABELLED PTHrP induced a proliferative cyclin D1 activation in low-density osteoblastic cells. The process was PKA and MAPK dependent and involved both AP-1 and CRE sites. In ectopic ossicles generated from implanted bone marrow stromal cells, PTH upregulated cyclin D1 after acute or intermittent anabolic treatment. These data suggest a positive role of(More)