Learn More
Gene regulation in eukaryotes requires the coordinate interaction of chromatin-modulating proteins with specific transcription factors such as the androgen receptor. Gene activation and repression is specifically regulated by histone methylation status at distinct lysine residues. Here we show that lysine-specific demethylase 1 (LSD1; also known as BHC110)(More)
CD103(+) dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c(+)MHCII(+) cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid(More)
Regulatory T (T(reg)) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting differentiation factor controlling T(reg) cell homeostasis and function, whereas the early T(reg)-cell-lineage commitment is regulated by(More)
Posttranslational modifications of histones, such as methylation, regulate chromatin structure and gene expression. Recently, lysine-specific demethylase 1 (LSD1), the first histone demethylase, was identified. LSD1 interacts with the androgen receptor and promotes androgen-dependent transcription of target genes by ligand-induced demethylation of mono- and(More)
Posttranslational modifications of histones such as methylation, acetylation and phosphorylation regulate chromatin structure and gene expression. Here we show that protein-kinase-C-related kinase 1 (PRK1) phosphorylates histone H3 at threonine 11 (H3T11) upon ligand-dependent recruitment to androgen receptor target genes. PRK1 is pivotal to androgen(More)
To determine the site and mechanism of suppression by regulatory T (Treg) cells, we investigated their migration and function in an islet allograft model. Treg cells first migrated from blood to the inflamed allograft where they were essential for the suppression of alloimmunity. This process was dependent on the chemokine receptors CCR2, CCR4, and CCR5 and(More)
Obesity is a risk factor for breast cancer in postmenopausal women. Leptin, an adipocyte-derived cytokine, elicits proliferative effects in some cell types and potentially stimulates the growth of mammary epithelium. Here we show that leptin induced time- and dose-dependent signal transducer and activator of transcription 3 (STAT3) phosphorylation and(More)
Mechanistic target of rapamycin complex 1 (mTORC1) integrates diverse environmental signals to control cellular growth and organismal homeostasis. In response to nutrients, Rag GTPases recruit mTORC1 to the lysosome to be activated, but how Rags are regulated remains incompletely understood. Here, we show that Sestrins bind to the heterodimeric(More)
SRCs (steroid receptor coactivators) are required for nuclear receptor-mediated transcription and are also implicated in the transcription initiation by other transcription factors, such as STATs and NFkappaB. Despite phenotypic manifestations in gene knockout mice for SRC-1, GRIP1, and AIB1 of the SRC (Steroid Receptor Coactivator) family indicating their(More)
MicroRNAs (miRNAs) are short, non-coding RNAs that regulate the expression of multiple target genes. Dysregulation of miRNAs is common in sepsis. Through microRNA microarray and qRT-PCR we found that the levels of miR-27a, miR-153 and miR-143 are up regulated, while let-7a, miR-218 and miR-129-5p are down regulated in lungs of septic mice. Knocking down of(More)