Learn More
Terminating a voluntary muscle contraction is an important aspect of motor control, and yet, its neurophysiology is unclear. The objective of this study was to determine the role of short-interval intracortical inhibition (SICI) by comparing SICIs during relaxation from a power grip versus during a sustained power grip at the matching muscle activity level.(More)
OBJECTIVE To investigate whether visual feedback of digit force directions for the index fingertip and thumb tip during repeated practice of grip force production can correct the digit force directions for persons with stroke during grip assessments. Following stroke, the paretic fingers generate digit forces with a higher than normal proportion of shear(More)
This study examined grip force development in individuals with hemiparesis following unilateral stroke. Eleven patients with chronic stroke with severe hand impairment and five age-matched neurologically intact subjects grasped an instrumented object between the index finger and thumb while fingertip forces, digit posture, and muscle electromyographic(More)
This study investigates the role of cutaneous feedback on maximum voluntary force (MVF), finger force deficit (FD) and finger independence (FI). FD was calculated as the difference between the sum of maximal individual finger forces during single-finger pressing tasks and the maximal force produced by those fingers during an all-finger pressing task. FI was(More)
Stroke survivors' difficulty in releasing grasped objects may be attributable not only to impaired finger extension but also to delays in terminating activity in the gripping flexor muscles. This study was undertaken 1) to quantify the time needed to initiate and terminate grip muscular activity following stroke and 2) to examine effects of arm support,(More)
This study compares two methods for estimating static friction coefficients for skin. In the first method, referred to as the 'tilt method', a hand supporting a flat object is tilted until the object slides. The friction coefficient is estimated as the tangent of the angle of the object at the slip. The second method estimates the friction coefficient as(More)
This study investigated the effect of object curvature, normal force and material on skin friction coefficient. Twelve subjects slid their middle fingertip pad against a test object with small (11 mm), medium (18, 21 mm) or large (flat object) radii of curvature, while maintaining a normal force of 1, 10 or 20 N. Tested materials were aluminium and four(More)
This study determined the impact of changing block surfaces on hand function, as well as identified particularly time-consuming movement components post stroke, measured by the Box and Block Test (BBT). Eight chronic stroke survivors and eight age- and gender-matched control subjects participated in this study. The BBT score (number of blocks moved) and(More)
Pheasant and O'Neill's torque model (1975) was modified to account for grip force distributions. The modified model suggests that skin friction produced by twisting an object in the direction of fingertips causes flexion of the distal phalanges and increases grip force and, thus, torque. Twelve subjects grasped a cylindrical object with diameters of 45.1,(More)
This study examined the effect of friction between the hand and grip surface on a person's grip strategy and force generation capacity. Twelve young healthy adults performed power grip exertions on an instrumented vertical cylinder with the maximum and 50% of maximum efforts (far above the grip force required to hold the cylinder), while normal and shear(More)