Learn More
Acidic and basic fibroblast growth factors (aFGF and bFGF, respectively) are expressed in high levels in adult central nervous system (CNS). We report the time course of developmental appearance and distribution of these factors and of two FGF receptors, FGFR-1 and FGFR-2, in the CNS of rats ranging in age from embryonic day 16 to adult. Immunohistochemical(More)
Basic fibroblast growth factor (bFGF), a member of the heparin-binding growth factor family, is present in relatively high levels in the brain where it may play an important role in the maintenance, repair, and reorganization of the tissue. Although bFGF is associated mainly with astrocytes throughout most of the central nervous system (CNS), a narrow but(More)
Brain damage after global forebrain ischemia is worsened by prior hyperglycemia and ameliorated by antecedent hypoglycemia. To assess whether GLUT3, the neuron specific glucose transporter and its mRNA, are affected by cerebral ischemia, we investigated the hippocampal pattern of GLUT3 immunoreactivity and GLUT3 gene expression 1, 4 and 7 days after global(More)
The human brain is a biological organ. On one hand it is soft, flexible and adaptive, but on the other hand is relatively stable and coherent with well developed intelligence. In order to retain intelligent thinking in a soft and adaptive organ there needs to be a constant, globally available, synchronization system that continuously stabilizes the brain.(More)
The RHD exposure categories of “low” and “high” used by Mead et al. and mentioned in the first column of page 18 (1) are not related to the categories of “low” and “high” given in the same paragraph at the top of the second column. The reader might easily assume that it was Mead et al. who considered that Jul–Dec 1995 was “a low exposure period.” This is(More)
The precise histologic localization of GLUT3, a glucose transporter thought to be restricted to neurons, is unknown. Using a high-affinity, specific antiserum against rodent GLUT3 for immunocytochemistry, light microscopic staining concentrates heterogeneously in the neuropil in a region- and lamina-specific manner; intense staining characterizes areas with(More)
  • 1