Author pages are created from data sourced from our academic publisher partnerships and public sources.
- Publications
- Influence
Elastin Degradation and Calcification in an Abdominal Aorta Injury Model: Role of Matrix Metalloproteinases
- D. M. Basalyga, D. Simionescu, W. Xiong, B. Baxter, B. Starcher, N. Vyavahare
- Medicine
- Circulation
- 30 November 2004
Background—Elastin calcification is a widespread feature of vascular pathology, and circumstantial evidence exists for a correlation between elastin degradation and calcification. We hypothesized… Expand
Identification and characterization of calcifying valve cells from human and canine aortic valves.
BACKGROUND AND AIM OF THE STUDY
Cardiac valve calcification is the predominant pathology in patients needing valve replacement. The aim of this study was to determine if aortic valve cells calcify… Expand
Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss.
- N. Vyavahare, M. Ogle, +4 authors R. Levy
- Materials Science, Medicine
- Journal of biomedical materials research
- 1 July 1999
Bioprosthetic heart valve (BPHV) degeneration, characterized by extracellular matrix deterioration, remodeling, and calcification, is an important clinical problem accounting for thousands of… Expand
Elastin Stabilization for Treatment of Abdominal Aortic Aneurysms
- J. Isenburg, D. Simionescu, B. Starcher, N. Vyavahare
- Medicine
- Circulation
- 3 April 2007
Background— Maintaining the integrity of arterial elastin is vital for the prevention of abdominal aortic aneurysm (AAA) development. We hypothesized that in vivo stabilization of aortic elastin with… Expand
Elastin-derived peptides and TGF-beta1 induce osteogenic responses in smooth muscle cells.
- A. Simionescu, K. Philips, N. Vyavahare
- Chemistry, Medicine
- Biochemical and biophysical research…
- 26 August 2005
Elastin degradation associated with matrix metalloproteinase activity is a cell-mediated process, observed in almost all types of vascular calcification. In this study, we tested the hypothesis that… Expand
Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves.
- J. Lovekamp, D. Simionescu, J. Mercuri, Brett Zubiate, M. Sacks, N. Vyavahare
- Materials Science, Medicine
- Biomaterials
- 1 March 2006
Glycosaminoglycans (GAGs) are important structural and functional components in native aortic heart valves and in glutaraldehyde (Glut)-fixed bioprosthetic heart valves (BHVs). However, very little… Expand
Prevention of bioprosthetic heart valve calcification by ethanol preincubation. Efficacy and mechanisms.
- N. Vyavahare, D. Hirsch, +6 authors R. Levy
- Medicine
- Circulation
- 21 January 1997
BACKGROUND
Calcification of the cusps of bioprosthetic heart valves fabricated from either glutaraldehyde cross-linked porcine aortic valves or bovine pericardium frequently causes the clinical… Expand
Glycosaminoglycan-targeted fixation for improved bioprosthetic heart valve stabilization.
- J. Mercuri, J. Lovekamp, D. Simionescu, N. Vyavahare
- Materials Science, Medicine
- Biomaterials
- 2007
Numerous crosslinking chemistries and methodologies have been investigated as alternative fixatives to glutaraldehyde (GLUT) for the stabilization of bioprosthetic heart valves (BHVs). Particular… Expand
Degeneration of bioprosthetic heart valve cusp and wall tissues is initiated during tissue preparation: an ultrastructural study.
- D. Simionescu, J. Lovekamp, N. Vyavahare
- Medicine
- The Journal of heart valve disease
- 1 March 2003
BACKGROUND AND AIM OF THE STUDY
Chronic tissue degeneration is a major factor in the failure of porcine bioprosthetic heart valves. Stabilization with glutaraldehyde (GA) has become the standard in… Expand
Triglycidylamine crosslinking of porcine aortic valve cusps or bovine pericardium results in improved biocompatibility, biomechanics, and calcification resistance: chemical and biological mechanisms.
- J. Connolly, I. Alferiev, +10 authors R. Levy
- Biology, Medicine
- The American journal of pathology
- 2005
We investigated a novel polyepoxide crosslinker that was hypothesized to confer both material stabilization and calcification resistance when used to prepare bioprosthetic heart valves.… Expand