N. M. Arefian

Learn More
Estimating the depth of anesthesia (DOA) is still a challenging area in anesthesia research. The objective of this study was to design a fuzzy rule based system which integrates electroencephalogram (EEG) features to quantitatively estimate the DOA. The proposed method is based on the analysis of single-channel EEG using frequency and time domain methods. A(More)
Various EEG features have been used in depth of anesthesia (DOA) studies. The objective of this study was to find the excellent features or combination of them than can discriminate between different anesthesia states. Conducting a clinical study on 22 patients we could define 4 distinct anesthetic states: awake, moderate, general anesthesia, and(More)
Estimating the depth of anesthesia (DOA) is still a challenging area in anesthesia research. The objective of this study was to design a fuzzy rule based system which integrates electroencephalogram (EEG) features to quantitatively estimate the DOA. The proposed method is based on the analysis of single-channel EEG using frequency and time domain features(More)
Background: Evaluation of depth of anesthesia is especially important in adequate and efficient management of patients. Clinical assessment of EEG in the operating room is one of the major difficulties in this field. This study aims to find the most valuable EEG parameters in prediction of the depth of anesthesia in different stages. Materials and Methods:(More)
  • 1