N. Danesh Pour

Learn More
Fundamental understanding of growth mechanisms of Li2O2 in Li-O2 cells is critical for implementing batteries with high gravimetric energies. Li2O2 growth can occur first by 1e(-) transfer to O2, forming Li(+)-O2(-) and then either chemical disproportionation of Li(+)-O2(-), or a second electron transfer to Li(+)-O2(-). We demonstrate that Li2O2 growth is(More)
Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review(More)
We present a rigorous analysis of unique, wide electrochemical window solutions for rechargeable magnesium batteries, based on aromatic ligands containing organometallic complexes. These solutions are comprised of the transmetalation reaction products of Ph(x)MgCl(2-x) and Ph(y)AlCl(3-y) in different proportions, in THF. In principle, these reactions(More)
Herein the first inorganic magnesium salt solution capable of highly reversible magnesium electrodeposition is presented. Synthesized by acid-base reaction of MgCl2 and Lewis acidic compounds such as AlCl3, this salt class demonstrates upwards of 99% Coulombic efficiency, deposition overpotential of <200 mV, and anodic stability of 3.1 V.
This Review is focused on ion-transport mechanisms and fundamental properties of solid-state electrolytes to be used in electrochemical energy-storage systems. Properties of the migrating species significantly affecting diffusion, including the valency and ionic radius, are discussed. The natures of the ligand and metal composing the skeleton of the host(More)
Understanding the oxygen reduction reaction kinetics in the presence of Na ions and the formation mechanism of discharge product(s) is key to enhancing Na-O2 battery performance. Here we show NaO2 as the only discharge product from Na-O2 cells with carbon nanotubes in 1,2-dimethoxyethane from X-ray diffraction and Raman spectroscopy. Sodium peroxide(More)
Protoporphyrin IX (PpIX) synthesis by malignant cells is successfully exploited for photodynamic therapy (PDT) following administration of 5-aminolevulinic acid (ALA) and light irradiation. The influence of two environmental heavy metal poisons, lead and gallium, on PpIX-synthesis and ALA-PDT was studied in two neu-ronal cell lines, SH-SY5Y neuroblastoma(More)
  • 1