N. A. Marks

Learn More
The fracture of tetrahedral amorphous carbon at the nanoscale was investigated with molecular dynamics simulations using the environment-dependent interatomic potential. It was found that the fracture strength of amorphous carbon nanospecimens is insensitive to initial cracks with diameters smaller than about 40 Å, i.e., the material exhibits flaw tolerance(More)
Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to(More)
A B S T R A C T Molecular dynamics simulation is used to study radiation damage cascades in graphite. High statistical precision is obtained by sampling a wide energy range (100–2500 eV) and a large number of initial directions of the primary knock-on atom. Chemical bonding is described using the Environment Dependent Interaction Potential for carbon.(More)
  • 1