Learn More
Although the hippocampus has been shown to be essential for spatial memory, the contribution of associated brain regions is not well established. Wistar rats were trained to find a hidden escape platform in the water maze during eight days. Following training, the oxidative metabolism in different brain regions was evaluated using cytochrome oxidase(More)
While the neuronal basis of spatial memory consolidation has been thoroughly studied, the substrates mediating the process of extinction remain largely unknown. This study aimed to evaluate the functional contribution of selected brain regions during the extinction of a previously acquired spatial memory task in the Morris water maze. For that purpose, we(More)
The progression of brain circuits involved in spatial learning tasks is still a matter of debate. In addition, the participation of individual regions at different stages of spatial learning remains a controversial issue. In order to address these questions, we used quantitative cytochrome oxidase histochemistry as a metabolic brain mapping method applied(More)
It is known that expression of glial fibrillary acidic protein (GFAP) as an astrocyte-specific marker can be regulated by levels of circulating gonadal steroids during postnatal development. In addition, astrocytes play an important role in the physiology of the hippocampus, a brain region considered sexually dimorphic at the neuronal level in rodents. To(More)
We quantified the number of glial fibrillary acidic protein immunoreactive (GFAP-IR) astrocytes in the CA1 and CA3 areas of the adult rat hippocampus. The dorsal and ventral regions of the hippocampus were taken into account to estimate the GFAP-IR cells using unbiased stereological techniques. Males had a higher number of GFAP-IR astrocytes in the CA3(More)
Learning of arbitrary stimulus-response associations is an adaptive behavior essential for species survival in an ever-changing environment. Particular subdivisions of the striatum have been shown to be critical for both motor-response learning and reversal learning. However, recent evidence suggests that different cortical and subcortical brain regions may(More)
The effects of acute administration of two benzodiazepines and a non-benzodiazepine hypnotic on behavior and brain metabolism were evaluated in rats. After testing the behavioral action of the benzodiazepines on the open field and the elevated plus-maze, the effects of the three drugs on neuronal metabolism of particular limbic regions were measured using(More)
The specific brain regions and circuits involved in the acquisition and expression of contextual fear conditioning are still a matter of debate. To address this issue, regional changes in brain metabolic capacity were mapped during the acquisition and expression of contextual fear conditioning using cytochrome oxidase (CO) quantitative histochemistry. In(More)
Alcoholism is one of the most important problems today. Chronic alcohol intake produces many cognitive deficits in humans, especially in memory. To evaluate the memory deficits in alcoholism it is very common to use animal models. In the present work, rats receiving chronic alcohol intake and not submitted to withdrawal were evaluated in a spontaneous(More)
The effects of classical fear conditioning in different regions of the limbic system were analysed using cytochrome oxidase (CO) histochemistry. Wistar rats were submitted to different conditions. Rats in the group Paired received tone-shock pairing, to elicit conditioned suppression of lever pressing (i.e., tone will evoke conditioned fear responses). The(More)