Myung Hyun Jo

Learn More
MicroRNA (miRNA) maturation is initiated by Microprocessor composed of RNase III DROSHA and its cofactor DGCR8, whose fidelity is critical for generation of functional miRNAs. To understand how Microprocessor recognizes pri-miRNAs, we here reconstitute human Microprocessor with purified recombinant proteins. We find that Microprocessor is an ∼364 kDa(More)
Argonaute is a key enzyme of various RNA silencing pathways. We use single-molecule fluorescence measurements to characterize the reaction mechanisms of the core-RISC (RNA-induced silencing complex) composed of human Argonaute 2 and a small RNA. We found that target binding of core-RISC starts at the seed region, resulting in four distinct reaction(More)
The viral sensor MDA5 distinguishes between cellular and viral dsRNAs by length-dependent recognition in the range of ~0.5-7 kb. The ability to discriminate dsRNA length at this scale sets MDA5 apart from other dsRNA receptors of the immune system. We have shown previously that MDA5 forms filaments along dsRNA that disassemble upon ATP hydrolysis. Here, we(More)
MicroRNA maturation is initiated by RNase III DROSHA that cleaves the stem loop of primary microRNA. DROSHA functions together with its cofactor DGCR8 in a heterotrimeric complex known as Microprocessor. Here, we report the X-ray structure of DROSHA in complex with the C-terminal helix of DGCR8. We find that DROSHA contains two DGCR8-binding sites, one on(More)
In the business process management, many business process execution languages such as XPDL, BPML, BPEL4WS have been specified with different origins and goals. Most of all, XPDL proposed by WfMC has been widely used in the related applications, especially workflows whose concepts are currently interchangeable with those of business processes. On the other(More)
Since its first demonstration about twenty years ago, single-molecule fluorescence resonance energy transfer (FRET) has undergone remarkable technical advances. In this tutorial review, we will discuss two technical advances that increase the information content of the single-molecule FRET measurements: single-molecule multi-color FRET and single-molecule(More)
Eukaryotic gene expression is tightly regulated post-transcriptionally by RNA-binding proteins (RBPs) and microRNAs. The RBP AU-rich-binding factor 1 (AUF1) isoform p37 was found to have high affinity for the microRNA let-7b in vitro (Kd = ∼ 6 nM) in cells. Ribonucleoprotein immunoprecipitation, in vitro association, and single-molecule-binding analyses(More)
A library of Trp-containing amphiphilic peptides was synthesized and screened for the ability to bind to pre-miRNA targets. Two members of this family, peptides Ac-WKKLLKWLKKLLKLAG-NH2 (2 b) and Ac-WKKLLKWLKKLLDabLAG-NH2 (4 b) were found to have nanomolar binding affinities to pre-let7a-1. Peptides 2 b and 4 b caused an increase in the in vitro Dicer(More)
In eukaryotes, small RNAs play important roles in both gene regulation and resistance to viral infection. Argonaute proteins have been identified as a key component of the effector complexes of various RNA-silencing pathways, but the mechanistic roles of Argonaute proteins in these pathways are not clearly understood. To address this question, we performed(More)
Eukaryotic mRNA decay is tightly modulated by RNA-binding proteins (RBPs) and microRNAs (miRNAs). RBP AU-binding factor 1 (AUF1) has four isoforms resulting from alternative splicing and is critical for miRNA-mediated gene silencing with a distinct preference of target miRNAs. Previously, we have shown that AUF1 facilitates miRNA loading to Argonaute 2(More)