Learn More
— We present an efficient two-phase approach to motion planning for small fixed-wing Unmanned Aerial Vehi-cles(UAVs) navigating in complex 3D air slalom environments. A coarse global motion planner first computes a kinematically feasible obstacle-free path in a discretized 3D workspace which roughly satisfies the kinematic constraints of the UAV. Given a(More)
When a camera rotates rapidly or shakes severely, a conventional KLT (Kanade–Lucas–Tomasi) feature tracker becomes vulnerable to large inter-image appearance changes. Tracking fails in the KLT optimization step, mainly due to an inadequate initial condition equal to final image warping in the previous frame. In this paper, we present a gyro-aided feature(More)
Estimating motions of a multi-camera system which may not have overlapping fields of view is generally complex and com-putationally expensive because of the non-zero offset between each camera's center. It is conceivable that if we can assume that multiple cameras share a single optical center, and thus can be modeled as a spherical imaging system, motion(More)
— We propose a novel inertial-aided KLT feature tracking method robust to camera ego-motions. The conventional KLT uses images only and its working condition is inherently limited to small appearance change between images. When big optical flows are induced by a camera-ego motion, an inertial sensor attached to the camera can provide a good prediction to(More)
This paper presents a motion planning method for mobile manipulators for which the base locomotion is less precise than the manipulator control. In such a case, it is advisable to move the base to discrete poses from which the manipulator can be deployed to cover a prescribed trajectory. The proposed method finds base poses that not only cover the(More)
— We present a drift-free attitude estimation method that uses image line segments for the correction of accumulated errors in integrated gyro rates when an unmanned aerial vehicle (UAV) operates in urban areas. Since man-made environments generally exhibit strong regularity in structure, a set of line segments that are either parallel or orthogonal to the(More)
This paper presents an outdoor mobile robot capable of high-speed navigation in outdoor environments. Here we consider the problem of a robot that has to follow a designated path at high speeds over undulating terrain. It must also be perceptive and agile enough to avoid small obstacles. Collision avoidance is a key problem and it is necessary to use(More)
— We present an easy-to-use calibration method for MEMS inertial sensor units based on the Factorization method which was originally invented for shape-and-motion recovery in computer vision. Our method requires no explicit knowledge of individual motions applied during calibration procedure. Instead a set of motion constraints in the form of an(More)