Mykola Mamenko

Learn More
Kidneys are complex highly organized paired organs of nearly one million nephrons each. They rigorously process about 180 l of plasma daily to keep whole body homeostasis. To effectively perform such a titanic work, kidneys rely on mechanisms able to sense dynamic changes in composition and flow rates of protourine along the renal tubule. It is envisioned(More)
The TRPV4 Ca(2+)-permeable channel is sensitive to mechanical stimuli. In the current study we have employed immunocytochemical staining in kidney slices and functional assessments (Ca(2+) imaging) in isolated, split-opened, tubule segments to define TRPV4 sites of expression and flow-dependent function in the collecting duct system. Staining patterns(More)
Mechanical forces are known to induce increases of [Ca(2+)](i) in the aldosterone-sensitive distal nephron (ASDN) cells to regulate epithelial transport. At the same time, mechanical stress stimulates ATP release from ASDN cells. In this study, we combined ratiometric Fura-2 based monitoring of [Ca(2+)](i) in freshly isolated split-opened ASDN with targeted(More)
It is recognized that dopamine promotes natriuresis by inhibiting multiple transporting systems in the proximal tubule. In contrast, less is known about the molecular targets of dopamine actions on water-electrolyte transport in the cortical collecting duct (CCD). Epithelial cells in the CCD are exposed to dopamine, which is synthesized locally or secreted(More)
The Ca2+-activated, maxi-K (BK) K+ channel, with low Ca2+-binding affinity, is expressed in the distal tubule of the nephron and contributes to flow-dependent K+ secretion. In the present study we demonstrate that the Ca2+-activated, SK3 (KCa2.3) K+ channel, with high Ca2+-binding affinity, is also expressed in the mouse kidney (RT-PCR, immunoblots).(More)
We have recently documented that the Ca(2+)-permeable TRPV4 channel, which is abundantly expressed in distal nephron cells, mediates cellular Ca(2+) responses to elevated luminal flow. In this study, we combined Fura-2-based [Ca(2+)]i imaging with immunofluorescence microscopy in isolated split-opened distal nephrons of C57BL/6 mice to probe the molecular(More)
Activation of the renal kallikrein-kinin system results in natriuresis and diuresis, suggesting its possible role in renal tubular sodium transport regulation. Here, we used patch-clamp electrophysiology to directly assess the effects of bradykinin (BK) on the epithelial Na(+) channel (ENaC) activity in freshly isolated split-opened murine(More)
We have documented recently that bradykinin (BK) directly inhibits activity of the epithelial Na(+) channel (ENaC) via the bradykinin B2 receptor (B2R)-G(q/11)-phospholipase C pathway. In this study, we took advantage of mice genetically engineered to lack bradykinin receptors (B1R, B2R(-/-)) to probe a physiological role of BK cascade in regulation of ENaC(More)
Copyright: © 2016 Berrout et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The molecular mechanisms of chronic pain are poorly understood and effective mechanism-based treatments are lacking. Here, we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected chronic mechanical and thermal hypersensitivity due to sustained elevated circulating adenosine. Extending(More)