Mykhailo Gonchar

Learn More
Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The(More)
This paper reports on the experimental data supporting an essential role of extra-cellular reduction in chromate detoxification by baker’s and non-conventional yeasts. A decrease of chromate content in the yeast culture coincides with an increase of Cr(III) content in extra-cellular liquid. At these conditions, cell-bound chromium level was insignificant(More)
Two types of biosensors selective to formaldehyde have been developed on the basis of pH-sensitive field effect transistor as a transducer. Highly or partially purified alcohol oxidase (AOX) and the permeabilised cells of methylotrophic yeast Hansenula polymorpha (as a source of AOX) have been used as sensitive elements. The response time in steady-state(More)
Considered are our own data and those found in literature on the properties of yeast mutants impaired in their ability to utilize methanol as sole carbon and energy source; hypotheses about the role of alcohol oxidase and citrate synthase in biogenesis of peroxisomes are proposed. It has been proved that formaldehyde reductase participates in the control of(More)
The dependence of prostanoid synthesis on the nature of free arachidonic acid (AA) appearance was investigated in mouse peritoneal macrophages. AA delivery from intracellular sources to the constitutive prostaglandin (PG)H synthase was provided by action of calcium-ionophore A23187; and from extracellular sources by AA addition to the culture medium. It was(More)
Nonmethylotrophic (Candida maltosa and Saccharomyces cerevisiae) and methylotrophic (Hansenula polymorpha) yeast cells acidified their incubation media in the presence of formaldehyde. This was associated with the release of formate. We studied the formaldehyde-dependent production of formic acid and the enzymatic properties of these strains grown on media(More)
The paper describes the selection of chromate-resistant mutants of the yeast Pichia guilliermondii with a higher chromate-reducing activity and reports the EPR-study of Cr(V)-generation in the extra-cellular medium during the reduction of chromate by the yeast culture. It is shown that the reduction of chromate to Cr(III) species runs through the(More)
Aliphatic amines, including methylamine, are air-pollutants, due to their intensive use in industry and the natural degradation of proteins, amino acids, and other nitrogen-containing compounds in biological samples. It is necessary to develop systems for removal of methylamine from the air, since airborne methylamine has a negative effect on human health.(More)
Halyna Ksheminska1, Daria Fedorovych2, Taras Honchar1, Maria Ivash1 and Mykhailo Gonchar1,3* Department of Analytical Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str. 14/16, UA-79005 Lviv, Ukraine Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Str. 14/16, UA-79005 Lviv,(More)
Mutants of the methylotrophic yeast Hansenula polymorpha deficient in NAD-dependent formaldehyde or formate dehydrogenases have been isolated. They were more sensitive for exogenous methanol but retained the ability for methylotrophic growth. In the medium with methanol the growth yields of the mutant 356–83 deficient in formaldehyde dehydrogenase and of(More)