Myeong-Kyun Shin

Learn More
The E7 oncoprotein of the high-risk human papillomaviruses (HPV) is thought to contribute to cervical carcinogenesis at least in part by abrogating cell cycle regulation. E7 can dysregulate the cell cycle through its interaction with several cellular proteins including the retinoblastoma suppressor protein pRb, as well as the cyclin-dependent kinase(More)
Human papillomavirus-16 (HPV-16) is associated etiologically with many human cervical cancers. It encodes 3 oncogenes E5, E6, and E7. Of these oncogenes, E7 has been found to be the dominant driver of cervical cancer in mice. More than 100 cellular proteins have been reported to associate with HPV-16 E7, which is thought to dysregulate the cell cycle in(More)
Head and neck squamous cell carcinomas (HNSCC) is a common cancer in humans long known to be caused by tobacco and alcohol use, but now an increasing percentage of HNSCC is recognized to be caused by the same human papillomaviruses (HPV) that cause cervical and other anogenital cancers. HPV-positive HNSCCs differ remarkably from HPV-negative HNSCCs in their(More)
Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency(More)
Fanconi anemia (FA) is a rare genetic disorder caused by defects in a DNA damage repair system, the FA pathway. FA patients frequently develop squamous cell carcinoma (SCC) at sites that are associated with human papillomavirus (HPV)-driven cancer including the female reproductive tract. To assess experimentally whether FA deficiency increases(More)
The E7 oncoprotein of the high-risk human papillomaviruses (HPV) is thought to contribute to cervical carcinogenesis at least in part by abrogating cell cycle regulation. E7 can dysregulate the cell cycle through its interaction with several cellular proteins including the retinoblastoma suppressor protein pRb, as well as the cyclin-dependent kinase(More)
Human papillomavirus-16 (HPV-16) is associated etiologically withmany human cervical cancers. It encodes 3 oncogenes E5, E6, and E7. Of these oncogenes, E7 has been found to be the dominant driver of cervical cancer in mice. More than 100 cellular proteins have been reported to associate with HPV-16 E7, which is thought to dysregulate the cell cycle in part(More)
Head and neck squamous cell carcinomas (HNSCC) is a common cancer in humans long known to be caused by tobacco and alcohol use, but now an increasing percentage of HNSCC is recognized to be caused by the same human papillomaviruses (HPV) that cause cervical and other anogenital cancers. HPV-positive HNSCCs differ remarkably fromHPV-negativeHNSCCs in their(More)
  • 1