Myeong Jin Yoon

Learn More
Type 2 diabetes (T2D) has become epidemic in our modern lifestyle, likely due to calorie-rich diets overwhelming our adaptive metabolic pathways. One such pathway is mediated by nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in mammalian NAD(+) biosynthesis, and the NAD(+)-dependent protein deacetylase SIRT1. Here, we show that(More)
Adiponectin has recently received a great deal of attention due to its beneficial effects on insulin resistance and metabolic disorders. One of the mechanisms through which adiponectin exerts such effects involves an increase in fatty acid oxidation in muscle and liver. In the present study, we demonstrate that 5'-AMP-activated protein kinase (AMPK) and p38(More)
Brown adipose tissue (BAT) protects against obesity by promoting energy expenditure via uncoupled respiration. To uncover BAT-specific long non-coding RNAs (lncRNAs), we used RNA-seq to reconstruct de novo transcriptomes of mouse brown, inguinal white, and epididymal white fat and identified ∼1,500 lncRNAs, including 127 BAT-restricted loci induced during(More)
Obesity is associated with adipose tissue dysfunction and multi-organ insulin resistance. However, the mechanisms of such obesity-associated systemic metabolic complications are not clear. Here, we characterized mice with adipocyte-specific deletion of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting NAD(+) biosynthetic enzyme known to(More)
Enhancing brown fat activity and promoting white fat browning are attractive therapeutic strategies for treating obesity and associated metabolic disorders. To provide a comprehensive picture of the gene regulatory network in these processes, we conducted a series of transcriptome studies by RNA sequencing (RNA-seq) and quantified the mRNA and long(More)
In adipocytes, oxidative stress and chronic inflammation are closely associated with metabolic disorders, including insulin resistance, obesity, cardiovascular disease, and type 2 diabetes. However, the molecular mechanisms underlying these metabolic disorders have not been thoroughly elucidated. In this report, we demonstrate that overexpression of(More)
Nicotinamide phosphoribosyltransferase (NAMPT), the key NAD(+) biosynthetic enzyme, has two different forms, intra- and extracellular (iNAMPT and eNAMPT), in mammals. However, the significance of eNAMPT secretion remains unclear. Here we demonstrate that deacetylation of iNAMPT by the mammalian NAD(+)-dependent deacetylase SIRT1 predisposes the protein to(More)
  • 1