Learn More
Coenzyme Q10 (CoQ10), a peculiar lipophilic antioxidant, is an essential component of the mitochondrial electron-transport chain. It is involved in the manufacturing of adenosine triphosphate (ATP) and has been linked with improving cognitive functions. The present study shows the neuroprotective effect of CoQ10 on cognitive impairments and oxidative damage(More)
Cyclopentenone prostaglandins (CyPGs), such as 15-deoxy-Δ(12,14) -prostaglandin J(2) (15d-PGJ(2)), are active prostaglandin metabolites exerting a variety of biological effects that may be important in the pathogenesis of neurological diseases. Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a brain specific deubiquitinating enzyme whose aberrant function has(More)
Recent evidence indicates that curcumin (CUR), the principal curcuminoid of turmeric, exhibits antioxidant potential and protects the brain against various oxidative stressors. The aim of the present study was to examine the modulating impacts of CUR against cognitive deficits and oxidative damage in intracerebroventricular-streptozotocin (ICV-STZ) infused(More)
Ginkgo biloba extract (EGb), a potent antioxidant and monoamine oxidase B (MAO-B) inhibitor, was evaluated for its anti-parkinsonian effects in a 6-hydroxydopamine (6-OHDA) rat model of the disease. Rats were treated with 50, 100, and 150 mg/kg EGb for 3 weeks. On day 21, 2 microL 6-OHDA (10 microg in 0.1% ascorbic acid saline) was injected into the right(More)
Under various abnormal physiologic conditions, overactivation of glutamate-gated ion channel receptor family members, including NMDA receptors, causes increase in COX-2 expression and generation of prostaglandins. PGE(2) exerts its physiologic actions mainly through its PGE(2) prostanoid (EP) receptors. In the present study, the role of the EP4 receptor(More)
The clinical side effects associated with the inhibition of cyclooxygenase enzymes under pathologic conditions have recently raised concerns. A better understanding of neuroinflammatory mechanisms and neuronal survival requires knowledge of cyclooxygenase downstream pathways, especially PGE2 and its G-protein-coupled receptors. In this study, we postulate(More)
Normal cellular metabolism produces oxidants that are neutralized by the cells' antioxidant enzymes and antioxidants taken from outside. An imbalance between oxidant and antioxidant has been postulated to lead to the neurodegeneration in the ischemic condition. In this study, we have demonstrated the prevention or slowdown of neuronal injury in middle(More)
Prostaglandin D2 (PGD2) is the most abundant prostaglandin in brain but its effect on neuronal cell death is complex and not completely understood. PGD2 may modulate neuronal cell death via activation of DP receptors or its metabolism to the cyclopentenone prostaglandins (CyPGs) PGJ2, Δ(12)-PGJ2 and 15-deoxy-Δ(12,14)-PGJ2, inducing cell death independently(More)
The cyclopentenone prostaglandin (CyPG) J2 series, including prostaglandin J2 (PGJ2), Δ12-PGJ2, and 15-deoxy-∆12,14-prostaglandin J2 (15d-PGJ2), are active metabolites of PGD2, exerting multiple effects on neuronal function. However, the physiologic relevance of these effects remains uncertain as brain concentrations of CyPGs have not been precisely(More)
Metal-imbalance has been reported as a contributor factor for the degeneration of dopaminergic neurons in Parkinson Disease (PD). Specifically, iron (Fe)-overload and copper (Cu) mis-compartmentalization have been reported to be involved in the injury of dopaminergic neurons in this pathology. The aim of this work was to characterize the mechanisms of(More)